DOI QR코드

DOI QR Code

제주도 서귀포지역 천연탄산수의 기원과 수리화학특성

Origin and Hydrochemical Characteristics of Natural Carbonated Water at Seoqwipo, Jeju Island

  • 정찬호 (대전대학교 건설안전방재공학과) ;
  • 이용천 (대전대학교 건설안전방재공학과) ;
  • 이유진 (대전대학교 건설안전방재공학과) ;
  • 최현영 (대전대학교 건설안전방재공학과) ;
  • 고기원 (제주특별자치도개발공사 지역가치연구팀) ;
  • 문덕철 (제주특별자치도개발공사 지역가치연구팀) ;
  • 정차연 (한국농어촌공사제주지역본부 지하수지질부) ;
  • 조시범 (한국농어촌공사제주지역본부 지하수지질부)
  • Jeong, Chan Ho (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Lee, Yong Cheon (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Lee, Yu Jin (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Choi, Hyeon Young (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Koh, Gi Won (Local Value Research Team, Jeju Province Development Corporation) ;
  • Moon, Duk Chul (Local Value Research Team, Jeju Province Development Corporation) ;
  • Jung, Cha Youn (Groundwater & Geology division, Korea Rural Community Corporation Jeju Regional Headquarter) ;
  • Jo, Si Beom (Groundwater & Geology division, Korea Rural Community Corporation Jeju Regional Headquarter)
  • 투고 : 2016.12.02
  • 심사 : 2016.12.27
  • 발행 : 2016.12.30

초록

본 연구에서는 제주 서귀포지역에서 산출되는 온천수 2지점과 탄산수 2지점에 대한 화학성분, CFCs (Chlorofluorocarbons) 동위원소, ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ 동위원소, 영족기체(He, Ne) 동위원소 분석을 통하여 탄산온천수와 탄산수의 수리화학적 특성, 생성연령, 영족기체의 기원과 $CO_2$ 가스의 기원을 해석하였다. 연구지역의 탄산수의 pH는 6.21~6.84의 범위의 약산성과 매우 높은 전기전도도 값($1,928{\sim}4,720{\mu}S/cm$)의 특성을 보인다. 화학적 유형은 $Mg(Ca,Na)-HCO_3$ 내지는 $Na(Ca,Mg)-HCO_3$ 유형을 보인다. 환경추적자인 CFCs 농도를 이용하여 지하수 연령측정결과, 탄산수는 약 47.5~57.2년, 지하수는 약 30.3~49.5년으로 추정되었다. 탄산수의 ${\delta}^{13}C$값은 -1.77~-7.27‰의 범위를 보여 $CO_2$ 가스의 기원은 심부기원과 일부 심부-무기기원의 혼합 기원으로 도시되었지만, 영족기체 조성비($^3He/^4He$, $^4He/^{20}Ne$)에서 헬륨가스가 심부기원의 농도가 절대적으로 높은 값을 보여 화산활동과 관련한 심부 마그마 기원임을 보여준다.

In this study, geochemical composition, CFCs (Chlorofluorocarbons), ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ isotopes and noble gases isotopes (He, Ne) were analyzed to determine their recharge age, source of $CO_2$ gas and noble gases of carbonated hot spring water and carbonated-water samples collected in the Seoqwipo of the Jeju. The pH of the carbonated waters ranges from 6.21 to 6.84, and the high electrical conductivity range ($1,928{\sim}4,720{\mu}S/cm$). Their chemical composition is classified as $Mg(Ca,\;Na)-HCO_3$ and $Na(Ca,\;Mg)-HCO_3$ types. As a result of the calculation of groundwater age using CFCs concentrations as an environmental tracer, the carbonated water and groundwater were estimated to be about 47.5~57.2 years and about 30.3~49.5 years, respectively. The ${\delta}^{13}C$ values of carbonated water range from -1.77 to -7.27‰, and are plotted on thr deep-seated field or the mixing field of the deep-seated and inorganic origin. Noble gases isotopic ($^3He/^4He$, $^4He/^{20}Ne$) ratio shows that helium gas of carbonated hot waters comes from deep-seated magma origin.

키워드

참고문헌

  1. Aka, F. T., Kusakabe, M., Nagiouang, K., and Tanyileke, G., 2001, Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of bioko, Sotome and Annobon, along with Cameroon Volcanic Line, West Africa. Applied Geochemistry, 16(3), 323-338. https://doi.org/10.1016/S0883-2927(00)00037-8
  2. Appelo, C. P. J. and Postma, D., 1993, Geochemistry, groundwater and pollution, A. A. Balkema Publisher, 90-94.
  3. Atekwana E. A. and Krishnamurthy R. V., 1998, Seasonal variations of dissolved inorganic carbon and ${\delta}^{13}C$ of surface waters: application of a modified gas evolution technique, Journal of Hydrology 205(3), 265-278. https://doi.org/10.1016/S0022-1694(98)00080-8
  4. Bakalowicz, M., 1979, Contribution de geochime deseaux a la connaissance de láquifere karstque et de la karstification, PhD thesis, Univ. Pierre et Marie Curie, Paris, France.
  5. Barnes, I., Irwin, W. P., and White, D. E., 1978, Global distribution of carbon dioxide discharges and major zones of seismicity. Water Resources investigations 78-39 open-file report., U.S geological survey, 1-12.
  6. Busenberg, E. and Plummer, L. N., 1992, Use of chlorofluorocarbons ($CCl_3$F and $CCl_2F_2$) as hydrologic tracers and age-dating tools:The alluvium and terrace system of central Oklahoma, Water Resources Research, 28(9), 2257-2283. https://doi.org/10.1029/92WR01263
  7. Ceron, J. C., Bosch, A. P., and Galdeano, C. S., 1998, Isotopic identification of $CO_2$ from a deep origin in thermomineral waters of southeastern Spain. Chemical Geology, 149(3), 251-258. https://doi.org/10.1016/S0009-2541(98)00045-X
  8. Choi, H. S., Koh, Y. K., Kim, C. S., Bae, D. S., and Yun, S. T., 2000, Environmental Isotope Characteristics of $CO_2$-rich Water in The Kangwon Province, The Korean Society of Economic and Environmental Geology, 33(6), 491-504 (in Korean with English abstract).
  9. Clark, I. and Fritz, P., 1997, Environmental isotopes in hydrology, Lewis publisers, 323p.
  10. Cornides, I. and Cornides, M., 1983, Isotope geochemical study of the $CO_2$ occurrences in the Eastern Carpathians. Foldt. Kozl, Budapest, 121-125.
  11. Cornides, I. and Kecskes. A., 1974, A genetic investigation of the carbon dioxide occurrences in the Carpathian Basin, Part II : Hungarian Mining Research Institute Pub., 17, 263-266.
  12. Craig, H., 1953, The geochemistry of the stable carbon isotopes, Geochimica Et Cosmochimica Acta, 3, 53-92. https://doi.org/10.1016/0016-7037(53)90001-5
  13. Craig, H., 1961, Isotopic variations in meteoric water, American for the Advancement of Science, 133(3465), 1702- 1703. https://doi.org/10.1126/science.133.3465.1702
  14. Dansgaard, W., 1964, Stable isotopes in precipitation, Tellus, 16, 436-468.
  15. Epstein, S. and Mayeda, T. K., 1953, Variation of $^{18}O$ content of waters from natural sources, Geochimica Et Cosmochimica Acta, 4(5), 213-224. https://doi.org/10.1016/0016-7037(53)90051-9
  16. Greenberg, A. E., Clesceri, L. S., and Eaton, A. D., 1992, Standard methods for the examination of water and waste water, The American Public Health Association, Washington DC, 4-55.
  17. Griesshaber, E., O'Nions, R. K., and Oxburgh, E. R., 1992, Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. Chemical Geology, 99(4), 213-235. https://doi.org/10.1016/0009-2541(92)90178-8
  18. Hoefe, J., 1997, Stable Isotope Geochemistry, Springer-Verlag Pub., 212p.
  19. Irwin, W. P. and Barnes, I., 1980, Tectonic relation of carbon dioxide discharges and earthquakes, Journal of Geophysical Research, 85(B6), 3115-3121. https://doi.org/10.1029/JB085iB06p03115
  20. Inshibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M., and Sakai, H., 1995, Helium and carbon geochemistry of hydrothermal fluids from the mid-Okinawa Trough Bak arc Basin, southwest of Japan, Chemical Geology, 123(1), 1-15. https://doi.org/10.1016/0009-2541(95)00051-M
  21. Jeong, C. H., Kim, C. S., Kim, T. K., and Kim, S. J., 1997, Reaction path modelling on geochemical evolution of groundwater and formation of secondary minerals in watergneiss reaction system, Journal of Mineralogical Society of Korea, 10(1), 33-44 (in Korean with English abstract).
  22. Jeong, C. H., 2002, Genesis and Hydrochemistry of $CO_2$-rich Springs from Kyungpook Province, Korea, Journal of the Korea Society of Economic and Environmental Geology , 35(2), 121-136 (in Korean with English abstract).
  23. Jeong C. H., 2004, Hydrochemistry and Formation Environment of $CO_2$-rich Springs from the Kangwon Province, Korea, Journal of Mineralogical Society of Korea, 17(1), 61-73 (in Korean with English abstract).
  24. Jeong, C. H., Kim, J. G., and Lee, J. Y., 2001, Occurrence Geochemistry and Origin of $CO_2$-rich Water from the Chungcheong Area, Korea, Korea Society of Economic and Environmental Geology, 34(2), 227-241 (in Korean with English abstract).
  25. Jeong, C. H., Yoo, S. W., Kim, K. H., and Nagao, K., 2011, Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk- Kangwon Province, Korea, The Journal of Engineering Geology, 21(1), 65-77 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.1.065
  26. Jeong, C. H., Kim, K. H., and Nagao, K., 2012, Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area, The Journal of Engineering Geology, 22(1), 123-134 (in Korean with English abstract). https://doi.org/10.9720/kseg.2012.22.1.123
  27. Jeong, C. H. and Jeong, G. Y., 1999, Geochemical Water Quality and Genesis of Carbonated Dalki Mineral Water in the Chungsong Area, Kyungpook, The Korean Society of Economic and Environmental Geology, 32(5), 455-468 (in Korean with English abstract).
  28. Jeong, C. H., Koh, Y. K., Shin, S. H., Nagao, K., Kim, K. H., and Kim, G. Y., 2009, Hydrochemistry and noble gas origin of hot spring waters of Icheon and Pocheon area in Korea, The Journal of Engineering Geology, 19(4), 529-541 (in Korean with English abstract).
  29. Koh. Y. K., Yun, S. T., and Kim, C. S., 1999(a), Geochemical Evolution of $CO_2$-rich Groundwater in the Jungwon Area, The Korean Society of Economic and Environmental Geology, 32(5), 469-483 (in Korean with English abstract).
  30. Koh. Y. K., Kim, C. S., Bae, D. S., Kim, G. Y., and Chung, H. J., 1999(b), Geochemical Studies of $CO_2$-rich water in the Chojeong area . Water Chemistry, Journal of the Korean Society of Groundwater Envrionment, 6(4), 159-170 (in Korean with English abstract).
  31. Lee, K. S., Grundstein, A. J., Wenner, D. B., Choi, M. S., Woo, N. C., and Lee, D. H., 2003, Climatic controls on the stable isotopic composition of precipitation in Northeast Asia, Climate Research, 23, 137-148. https://doi.org/10.3354/cr023137
  32. Lee, K. S., Koh, D. C., Lee, D. H., and Park, W. B., 2002, The temporal and spacial distribution of stable isotope compositions of precipitation in Jeju Island : application to groundwater recharge study, Journal of the Geological Society of Korea, 38(2), 151-161 (in Korean with English abstract).
  33. Lee, K. S., Wenner, D. B., and Lee, I., 1999, Using H- and Oisotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea, Journal of Hydrology, 222(1), 65-74. https://doi.org/10.1016/S0022-1694(99)00099-2
  34. Marques, J. M., Monteiro Santos F. A., Graca, R. C., Castro, R., Aires-Barros, L., and Mendes Victor, L. A., 2001, A geohemical and geophysical approach to derive a conceptual circulation model of $CO_2$-rich mineral waters: A case study of Vilarelho da Raia, Northern Portugal, Journal of Hydrogeology, 9(6), 584-596. https://doi.org/10.1007/s10040-001-0162-8
  35. Moore, J. G., Bachelder, J. N., and Cunningham, C. G., 1997, $CO_2$-filled vesicles in mid-ocean basalt, Journal of Volcanology and Geothermal Research, 2(4), 309-327. https://doi.org/10.1016/0377-0273(77)90018-X
  36. Morrison, J., Brockwell, T., Merren, T., Fourel, F., and Phillips, A. M., 2001. On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples, Analytical Chemistry, 73(15), 3570-3575. https://doi.org/10.1021/ac001447t
  37. Park, J. S., Jeong, C. J., Nagao, K., Yang J. H., Sumino, H., Kim K. H., Kim, M. S., Lee, J . I., Park. C. H., Koh, Y. K., and Hur, S. D., 2016, Hydrochemistry and noble gas geochemistry of geothermal waters in Chungcheong Province, South Korea, Geochemical Journal, Vol. 50(1), 89-103. https://doi.org/10.2343/geochemj.2.0388
  38. Park, K. H., Cho, D. L., and Kim, J. C., 2000(a), Geologic report of the moseulpo-hanlim sheet (scale 1:50,000), Korea Institute of Geology and Mining and Materials, 74p.
  39. Park, K. H., Cho, D. L., Kim, Y. B., Kim, J. C., Cho, B. W., Jang, Y. N., Lee, B. j., Lee, S. R., Son, B. K., Cheon, H. Y., Lee, H. Y., and Kim, Y. U., 2000(b), Geologic report of the segwipo-hanyori sheet (scale 1:50,000), Jeju Provincial Government, 163p.
  40. Pineau, F., Javoy, M., and Bottinga, Y., 1976, $^{13}C/^{12}C$ ratios of rocks and inclusions in popping rocks of the Mid-Atantic Rigde and their bearing on the problem of isotopic compositions of deep seated carbon, Earth and Planetary Science Letters, 29(2), 413-421. https://doi.org/10.1016/0012-821X(76)90146-1
  41. Piper. A. M., 1944, A Graphic procedure in the geochemical interpretation of Water-analyses, Transaction, American Geophysical Union, 25(6), 914-923. https://doi.org/10.1029/TR025i006p00914
  42. Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R., 1993, Isotopic patterns in modern global precipitation. In: Swart, P. K., Lohman, K. C., Mckenzie, J. and Savin, S. (eds.), Climate Change in Continental Isotopic Records, Geophysical Monograph 78, American Geophysical Union, 1-36.
  43. Szabo, Z., Rice, D. E., Plummer, L. N., Busenberg, E., Drenkard, S., and Scholosser, P., 1996, Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain, Water Resources Research, 32(4), 1023-1038. https://doi.org/10.1029/96WR00068
  44. U.S. Geological Survey, 2015, CFCs North American average curve, Retrieved from http://water.usgs.gov/lab/software/ air_curve/index.html.
  45. Yurtsever, Y. and Gat, J. R., 1981, Atmospheric waters. In: Gat, J. R. and Gonfiantini, R. (eds.), Stable Isotope Hydrology: Deuterium and oxygen-18 in the water cycle, IAEA Technical Reports Series, 13(12). 103-142.

피인용 문헌

  1. Major and Trace Element Geochemistry of Korean Bottled Waters vol.12, pp.9, 2016, https://doi.org/10.3390/w12092585
  2. Short-Term Monitoring of Geogenic Soil CO2 Flux in a Non-Volcanic and Seismically Inactive Emission Site, South Korea vol.8, pp.None, 2016, https://doi.org/10.3389/feart.2020.599388