DOI QR코드

DOI QR Code

Dynamic testing and health monitoring of historic and modern civil structures in Italy

  • Gattulli, Vincenzo (Department of Civil Architectural and Environmental Engineering, University of L'Aquila) ;
  • Lepidi, Marco (Department of Civil, Chemical and Environmental Engineering, University of Genoa) ;
  • Potenza, Francesco (Department of Civil Architectural and Environmental Engineering, University of L'Aquila)
  • Received : 2015.12.14
  • Accepted : 2016.03.01
  • Published : 2016.03.25

Abstract

The paper reports a wide overview of the scientific activities on Structural Health Monitoring (SHM) in Italy. They are classified on three different conceptual scales: national territory (macro); regional area (medium); single structure (small). In the latter case differences have been pointed out between permanent installation and short-term experimental campaigns. A particular focus has been dedicated to applications devoted to cultural heritage which have an important historic, strategic and economic value for Italy. Two specific cases, the first related to the permanent monitoring of an historical Basilica and the second regarding the dynamic testing of a modern structure, have been presented as a basis for a general discussion.

Keywords

References

  1. Amezquita-Sanchez, J.P. and Adeli, H. (2014), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Comput. Method. E., 23(1) 1-15.
  2. Ansari, F. (2007), "Practical implementation of optical fiber sensors in civil structural health monitoring", J. Intel. Mat. Syst. Str., 18(8), 879-889. https://doi.org/10.1177/1045389X06075760
  3. Antonacci, E., De Stefano, A., Gattulli, V., Lepidi, M. and Matta, E. (2012), "Comparative study of vibration-based parametric identification techniques for a three-dimensional frame structure", Struct. Control Health Monit., 19(5), 579-608. https://doi.org/10.1002/stc.449
  4. Bandara, R.P., Tommy, H.T.C. and Thambiratnam, D.P. (2014), "Structural damage detection method using frequency response function", Struct. Health Monit., 13(4), 418-429. https://doi.org/10.1177/1475921714522847
  5. Bartoli, G., Betti, M. and Giordano, S. (2013), "In situ static and dynamic investigations on the "Torre Grossa" masonry tower", Eng. Struct., 52, 718-733. https://doi.org/10.1016/j.engstruct.2013.01.030
  6. Basu, B., Bursi, O., Casciati, F., Casciati, S., Del Grosso, A., Domaneschi, M., Faravelli, L, Holnicki-Szulc, J., Irschik, H., Krommer, M., Lepidi, M., Martelli, A., Ozturk, B., Pozo, F., Pujol, G., Rakicevic, Z. and Rodellar, J. (2014), "A European association for the control of structures joint perspective. recent studies in civil structural control across Europe", Struct. Control Health Monit., 21(12), 1414-1436. https://doi.org/10.1002/stc.1652
  7. Bennati, S., Nardini, L. and Salvatore, W. (2005), "Dynamic Behaviour of a Medieval Masonry Bell Tower. II: Measurement and Modeling of the Tower Motion", J. Struct. Eng.-ASCE, 131(11), 1656-1664. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1656)
  8. Betz, D.C., Staudigel, L., Trutzel, M.N. and Kehlenbach, M. (2003), "Structural monitoring using fiber-optic bragg grating sensors", Struct. Health Monit., 2(2), 145-152. https://doi.org/10.1177/1475921703002002006
  9. Binda, L., Lualdi, M. and Saisi, A. (2007), "Non-destructive testing techniques applied for diagnostic investigation: Syracuse Cathedral in Sicily, Italy", Int. J. Architectural Heritage, 1(4), 380-402. https://doi.org/10.1080/15583050701386029
  10. Brandonisio, G., Lucibello, G., Mele, E. and De Luca, A. (2013), "Damage and performance evaluation of masonry churches in the 2009 L'Aquila earthquake", Eng. Fail. Anal., 34, 693-714. https://doi.org/10.1016/j.engfailanal.2013.01.021
  11. Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10, 441-445. https://doi.org/10.1088/0964-1726/10/3/303
  12. Carden, P.E. and Brownjohn J.M.W. (2008), "ARMA modelled time series classification for structural health monitoring", Mechanical Systems and Signal Processing, 22, 295-314. https://doi.org/10.1016/j.ymssp.2007.07.003
  13. Carpinteri, A., Lacidogna, G., Manuello, A. and Niccolini, G. (2015), "A study on the structural stability of the Asinelli Tower in Bologna", Struct. Control Health Monit., in press.
  14. Carpinteri, A. and Lacidogna, G. (2006), "Structural monitoring and integrity assessment of medieval towers", J. Struct. Eng.-ASCE, 132(11), 1681-1690. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1681)
  15. Cavalagli, N., Gioffre, M. and Gusella, V. (2015), "Structural monitoring of monumental buildings: The Basilica of Santa Maria Degli Angeli in Assisi (ITALY)", Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 25 May 2015.
  16. Ceci, A.M., Contento, A., Fanale, L., Galeota, D., Gattulli, V., Lepidi, M. and Potenza, F. (2010), "Structural performance of the historic and modern buildings of the University of L'Aquila during the seismic events of April 2009", Eng. Struct., 32(7), 1899-1924. https://doi.org/10.1016/j.engstruct.2009.12.023
  17. Ceci, A.M., Gattulli, V. and Potenza, F. (2013), "Serviceability and damage scenario in RC irregular structures: post-earthquake observations and modelling predictions", J. Perform. Constr. Fac., 27(1), 98-115. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000317
  18. Ceravolo, R., Pistone, G., Zanotti Fragonara, L., Massetto, S. and Abbiati, G. (2014), "Vibration-based monitoring and diagnosis of cultural heritage. a methodological discussion in three examples", Int. J. Architectural Heritage, doi: 10.1080/15583058.2013.850554.
  19. Cigada, A., Castiglione, B., Scaccabarozzi, M., Vanali, M. and Zappa, E. (2013), "Monitoraggio strutturale continuativo: il cantiere di restauro della guglia maggiore del Duomo di Milano", Archeomatica, 4(4), 14-19.
  20. Cimellaro, G.P, Pianta, S. and De Stefano, A. (2012), "Output-only modal identification of ancient L'Aquila city hall and civic tower", J. Struct. Eng.-ASCE, 138(4), 481-491. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000494
  21. Clementi, F., Quagliarini, E., Maracchini, G. and Lenci, S. (2015), "Post-World War II Italian school buildings: typical and specific sesmic vulnerabilities", J. Build. Eng., 4, 152-166. https://doi.org/10.1016/j.jobe.2015.09.008
  22. Clemente, P. and Buffarini, G. (2009), Dynamic response of buildings of the cultural heritage, Encyclopedia of Structural Health Monitoring, Chapter 134, Wiley.
  23. Chiorino, M.A., Ceravolo, R., Spadafor, A., Zanotti Fragonara, L. and Abbiati, G (2011), "Dynamic characterization of complex masonry structures: the Sanctuary of Vicoforte", Int. J. Architectural Heritage, 5, 296-314. https://doi.org/10.1080/15583050903582516
  24. D'Ambrisi, A., Mariani, V. and Mezzi, M., (2012), "Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests", Eng. Struct., 36, 210-219. https://doi.org/10.1016/j.engstruct.2011.12.009
  25. D'Ayala, D.F. and Paganoni, S. (2011), "Assessment and analysis of damage in L'Aquila historic city centre after 6th April 2009", Bull. Earthq. Eng., 9(1), 81-104. https://doi.org/10.1007/s10518-010-9224-4
  26. De Stefano, A. (2009), SHM Actions on the Holy Shroud Chapel in Torino, Encyclopedia of Structural Health Monitoring, Chapter 132, Wiley.
  27. Ditommaso, R., Ponzo, F.C. and Auletta, G. (2015), "Damage detection on framed structures: modal curvature evaluation using Stockwell Transform under seismic excitation", Earthq. Eng. Eng. Vib., 14(2), 265-274. https://doi.org/10.1007/s11803-015-0022-5
  28. Dolce, M., Nicoletti, M., De Sortis, A., Marchesini, S., Spina, D. and Talanas, F. (2015), "Osservatorio sismico delle strutture: the Italian structural seismic monitorign network", Bull. Earthq. Eng., in press.
  29. Federici, F., Graziosi, F., Faccio, M., Colarieti, A., Gattulli, V., Lepidi, M. and Potenza, F. (2012), "An integrated approach to the design of Wireless Sensor Networks for structural health monitoring", Int. J. Distributed Sensor Networks, Article ID 594842.
  30. Foti, D., Gattulli, V. and Potenza, F. (2014), "Output-only identification and model updating by dynamic testing in unfavorable conditions of a seismically damaged building", Comput.-Aided Civil Infrastruct. Eng., 29(9), 659-675. https://doi.org/10.1111/mice.12071
  31. Foti, D., Ivorra Chorro, S. and Sabba, M.F. (2012a), "Dynamic investigation of an ancient masonry bell tower with operational modal analysis: a non-destructive experimental technique to obtain the dynamic characteristics of a structure", The Open Constr. Build. Technol. J., 6, 384-391. https://doi.org/10.2174/1874836801206010384
  32. Foti, D., Diaferio, M., Giannoccaro, N.I. and Mongelli, M. (2012b), "Ambient vibration testing, dynamic identification and model updating of a historic tower", NDT&E Int., 47, 88-95. https://doi.org/10.1016/j.ndteint.2011.11.009
  33. Gattulli, V., Antonacci, E. and Vestroni, F. (2013), "Field observations and failure analysis of the Basilica S. Maria di Collemaggio after the 2009 L'Aquila earthquake", Eng. Fail. Anal., 34, 715-734. https://doi.org/10.1016/j.engfailanal.2013.01.020
  34. Gattulli, V., Potenza F., Graziosi F., Federici F., Colarieti A. and Faccio M. (2014), "Design of wireless sensor nodes for structural health monitoring applications", Procedia Eng., 87, 1298-1301. https://doi.org/10.1016/j.proeng.2014.11.685
  35. Gattulli, V., Potenza, F., Toti, J., Valvona, F. and Marcari, G. (2015), "Ecosmart reinforcement for a masonry polycentric pavilion vault", Open Constr. Build. Technol. J., in press.
  36. Gentile, C. and Gallino, N. (2008), "Condition assessment and dynamic system identification of a historic suspension footbridge", Struct. Control Health Monit., 15(3), 369-388. https://doi.org/10.1002/stc.251
  37. Gentile, C. and Saisi, A. (2015), "Continuous dynamic monitoring of a centenary iron bridge for structural modification assessment", Front. Struct. Civil Eng., 9(1), 26-41. https://doi.org/10.1007/s11709-014-0284-4
  38. Gentile, C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Build. Mater., 21, 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007
  39. Gentile, C., Saisi, A. and Cabboi, A. (2015), "Structural identification of a masonry tower based on operational modal analysis", Int. J. Architectural Heritage, 9(2), 98-110. https://doi.org/10.1080/15583058.2014.951792
  40. Goyal, D. and Pabla, B.S. (2015), "The vibration monitoring methods and signal processing techniques for structural health monitoring: A review", Arch. Comput. Method. E., 1-10.
  41. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S., Jung, H., Yun, C., Spencer, B.F. Jr. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
  42. Jacobs, S., Matthys, G., De Roeck, G., Taerve, L., de Waele, W. and Degrieck, J. (2007), "Testing of a prestressed concrete girder to study the enhanced performance of monitoring by integrating optical fiber sensors", J. Struct. Eng.-ASCE, 133(4), 541-549. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:4(541)
  43. Kim, J. and Lynch, P. (2012a), "Subspace system identification of support-excited structures-part I: theory and black-box system identification", Earthq. Eng. Struct. D., 41, 2235-2251.
  44. Kim, J. and Lynch, P. (2012b), "Subspace system identification of support-excited structures-part II: gray-box interpretations and damage detection", Earthq. Eng. Struct. D., 41, 2253-2271.
  45. Lepidi, M., Gattulli, V. and Foti, D. (2009), "Swinging-bell resonances and their cancellation identified by dynamical testing in a modern bell tower", Eng. Struct., 31, 1486-1500. https://doi.org/10.1016/j.engstruct.2009.02.014
  46. Li, Q.B. and Ansari, F. (2001), "Circumferential strain measurement of high strengh concrete in triaxial compression by fiber optic sensor", Int. J. Solid Struct., 38(42-43), 2001.
  47. Lorenzoni, F., Casarin, F., Caldon, M. and Islami, K. (2016), "Uncertainty quantification in structural health monitoring: Applications on cultural heritage buildings", Mech. Syst. Signal Pr., 66-67, 268-281. https://doi.org/10.1016/j.ymssp.2015.04.032
  48. Marazzi, F., Tagliabue, P. and Corbani, F.M. (2011), "Traditional vs innovative structural health monitoring of monumental structures: A case study", Struct. Control Health Monit., 18, 430-449. https://doi.org/10.1002/stc.382
  49. Modena, C., Lorenzoni, F., Caldon, M. and Valluzzi, M.R. (2015), "Structural health monitoring and diagnostic investigations of the Scrovegni Chapel, Italy", Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineeering, Crete, Greece, 25 May 2015.
  50. Moyo, P., Brownjohn, J.M.W., Suresh, R. and Tjin, S.C. (2005), "Development of fiber Bragg grating sensors for monitoring civil infrastructures", Eng. Struct., 27(12), 1828-1834. https://doi.org/10.1016/j.engstruct.2005.04.023
  51. Neirotti, P., De Marco, A., Cagliano, A.C., Mangano, G. and Scorrano, F. (2014), "Current trends in smart city initiatives: Some stylised facts", Cities, 28, 25-36.
  52. Nistico, N., Gambarelli, S., Fascetti, A. and Quaranta, G. (2015), "Experimental dynamic testing and numerical modeling of historical belfry", Int. J. Architectural Heritage, in press.
  53. O zerdem, A. and Rufini, G. (2013), "L'Aquila's reconstruction challenges: Has Italy learned from its previous earthquake disasters?", Disasters, 37(1), 119-143. https://doi.org/10.1111/j.1467-7717.2012.01296.x
  54. Pau, A. and Vestroni, F. (2013), "Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome", Mech. Syst. Signal Pr., 41(1-2), 454-466. https://doi.org/10.1016/j.ymssp.2013.05.009
  55. Pau, A. and Vestroni, F. (2008), "Vibration analysis and dynamic characterization of the Colosseum", Struct. Control Health Monit., 15, 1105-1121. https://doi.org/10.1002/stc.253
  56. Peeters, B. and De Roeck, G. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Pr., 13(6), 855-878. https://doi.org/10.1006/mssp.1999.1249
  57. Potenza, F., Federici, F., Lepidi, M., Gattulli, V., Graziosi, F. and Colarieti, A. (2015), "Long term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network", J. Civil Struct. Health Monit., 5, 655-676. https://doi.org/10.1007/s13349-015-0146-3
  58. Rainieri, C., Fabbrocino, G., Manfredi, G. and Dolce, M. (2012), "Robust output-only modal identification and monitoring of buildings in the presence of dynamic interactions for rapid post-earthquake emergency management", Eng. Struct., 34, 436-446. https://doi.org/10.1016/j.engstruct.2011.10.001
  59. Ramos, L.F., Marques, L., Lourenco, G., De Roeck, G., Campos-Costa, A. and Roque, J. (2010), "Monitoring historical masonry structures with operational modal analysis: Two case studies", Mech. Syst. Signal Pr., 24, 1291-1305. https://doi.org/10.1016/j.ymssp.2010.01.011
  60. Russo, G., Bergamo, O., Damiani, L. and Lugato, D. (2010), "Experimental analysis of the "Saint Andrea" Masonry Bell Tower in Venice. A new method for the determination of "Tower Global Young's Modulus E", Eng. Struct., 32, 353-360. https://doi.org/10.1016/j.engstruct.2009.08.002
  61. Russo, S. (2013a), "On the monitoring of historic Anime Sante church damaged by earthquake in L'Aquila", Struct. Control Health Monit., 20(9), 1226-1239. https://doi.org/10.1002/stc.1531
  62. Russo, S. (2013b), "Testing and modelling of dynamic out-of-plane behaviour of the historic masonry facade of Palazzo Ducale in Venice, Italy", Eng. Struct., 46, 130-139. https://doi.org/10.1016/j.engstruct.2012.07.032
  63. Siriwardane, S.C. (2015), "Vibration measurement-based simple technique for damage detection of truss bridge: A case study", Case Studies in Engineering Failure Analysis, 4, 50-58. https://doi.org/10.1016/j.csefa.2015.08.001
  64. Saisi, A., Gentile, C. and Guidobaldi, M. (2015), "Post-earthquake continuos dynamic monitoring of the Gabbia Tower in Mantua, Italy", Constr. Build. Mater., 81, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.02.010
  65. Sepe, V., Speranza, E. and Viskovic, A. (2008), "A method for large-scale vulnerability assessment of historic towers", Struct. Control Health Monit., 15(3), 389-415. https://doi.org/10.1002/stc.243
  66. Spina, D., Lamonaca, D., Nicoletti, B.G. and Dolce, M. (2011), "Structural monitoring by the Italian Department of Civil Protection and the case of 2009 Abruzzo seismic sequence", Bull. Earthq. Eng., 9, 325-346. https://doi.org/10.1007/s10518-010-9232-4
  67. Tarinejad, R. and Damadipour, M. (2014), "Modal identification of structures by a novel approach based on FDD-wavelet method", J. Sound Vib., 333, 1024-1045. https://doi.org/10.1016/j.jsv.2013.09.038
  68. Todd, M.D., Johnson, G.A. and Vohra, S.T. (2001), "Deployment of a fiber bragg grating-based measurement system in a structural health monitoring application", Smart Mater. Struct., 10(3), 534-539. https://doi.org/10.1088/0964-1726/10/3/316
  69. Ulriksen, M.D. and Damkilde, L. (2015), "Structural damage localization by outlier analysis of signal-processed mode shapes-Analytical and experimental validation", Mech. Syst. Signal Pr., doi:10.1016/j.ymssp.2015.07.021.
  70. Valvona, F., Toti, J., Gattulli, V. and Potenza, F. (2015), "Effective seismic strengthening and monitoring of a masonry vault by using GFRCM grids with embedded FBG sensors", submitted to Eng. Struct.
  71. Ye, X.W., Su, Y.H. and Han J.P. (2014), "Structural health monitoring of civil infrastructures using optical fiber sensing technologies: A comprehensive review", The Scientific World Journal, Article ID 652329.
  72. Yeum, C.M. and Dyke, S.J. (2015), "Vision-based automated crack detection for bridge inspection", Comput. -Aided Civil Infrastruct. Eng., 30(10), 759-770. https://doi.org/10.1111/mice.12141
  73. Zasso, A. Mirabella Roberti, G., Corradi, R. and Tongini Folli, R. (2004), "Characterisation of static and dynamic response of historic buildings: experimental investigation and monitoring of the Torrazzo in Cremona (Italy)", Politecnico, 8, 22-27.
  74. Zonta, D., Wu, H., Pozzi, M., Zanon, P., Ceriotti, M., Mottola, L., Picco, GP., Murphy, AL., Guna, S. and Corra, M. (2010), "Wireless sensor networks for permanent health monitoring of historic buildings", Smart Struct. Syst., 6(5-6), 595-618. https://doi.org/10.12989/sss.2010.6.5_6.595

Cited by

  1. Damage Identification of Unreinforced Masonry Panels Using Vibration-Based Techniques vol.2017, 2017, https://doi.org/10.1155/2017/9161025
  2. A low cost distributed measurement system based on Hall effect sensors for structural crack monitoring in monumental architecture 2017, https://doi.org/10.1016/j.measurement.2017.11.050
  3. Structural health monitoring of the retrofitting process, characterization and reliability analysis of a masonry heritage construction vol.7, pp.3, 2017, https://doi.org/10.1007/s13349-017-0232-9
  4. Sensitivity to Damage Imperfection for Multileaf Masonry Walls Based on Vibrational Analyses vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/2321589
  5. Post-earthquake controls and damage detection through structural health monitoring: applications in l’Aquila vol.8, pp.2, 2018, https://doi.org/10.1007/s13349-018-0270-y
  6. Ambient vibration test and numerical investigation on the St. Giuliano church in Poggio Picenze (L’aquila, Italy) vol.9, pp.4, 2016, https://doi.org/10.1007/s13349-019-00346-7
  7. Hazard analysis and monitoring for debris flow based on intelligent fuzzy detection vol.7, pp.1, 2016, https://doi.org/10.12989/smm.2020.7.1.059
  8. The Quality Assessment of Different Geolocalisation Methods for a Sensor System to Monitor Structural Health of Monumental Objects vol.20, pp.10, 2020, https://doi.org/10.3390/s20102915
  9. Structural Health Monitoring in Historical Buildings: A Network Approach vol.3, pp.3, 2016, https://doi.org/10.3390/heritage3030044
  10. Fem Model Calibration of Experimental Environmental Vibration Tests on Two Churches Hit by L’Aquila Earthquake vol.15, pp.1, 2021, https://doi.org/10.1080/15583058.2020.1719233
  11. Environmental and Ambient Vibration Monitoring of Historical Adobe Buildings: Applications in Emblematic Andean Churches vol.15, pp.8, 2016, https://doi.org/10.1080/15583058.2019.1653402
  12. Numerical Study of Vibrations Induced by Traffic in Structures and a Screen Alternative for Its Mitigation vol.15, pp.10, 2016, https://doi.org/10.1080/15583058.2019.1706790