DOI QR코드

DOI QR Code

Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion

  • Chien, Hsiu-Wen (Department of Chemical Engineering, National Taiwan University) ;
  • Keng, Ming-Chun (Department of Chemical Engineering, National Taiwan University) ;
  • Chen, Hsien-Yeh (Department of Chemical Engineering, National Taiwan University) ;
  • Huang, Sheng-Tung (Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Science and Technology) ;
  • Tsai, Wei-Bor (Department of Chemical Engineering, National Taiwan University)
  • Received : 2015.10.01
  • Accepted : 2016.02.15
  • Published : 2016.03.25

Abstract

A surface resisting protein adsorption and cell adhesion is highly desirable for many biomedical applications such as diagnostic devices, biosensors and blood-contacting devices. In this study, a surface conjugated with sulfobetaine molecules was fabricated via the click reaction for the anti-fouling purpose. An alkyne-containing substrate (Alkyne-PPX) was generated by chemical vapor deposition of 4-ethynyl-[2,2]paracyclophane. Azide-ended mono-sulfobetaine molecules were synthesized and then conjugated on Alkyne-PPX via the click reaction. The protein adsorption from 10% serum was reduced by 57%, while the attachment of L929 cells was reduced by 83% onto the sulfobetaine-PPX surface compared to the protein adsorption and cell adhesion on Alkyne-PPX. In conclusion, we demonstrate that conjugation of mono-sulfobetaine molecules via the click chemistry is an effective way for reduction of non-specific protein adsorption and cell attachment.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology of Taiwan

References

  1. Babacan, S., P., Pivarnik, S., Letcher and A.G., Rand (2000), "Evaluation of antibody immobilization methods for piezoelectric biosensor application", Biosens. Bioelectron., 15(11-12), 615-621. https://doi.org/10.1016/S0956-5663(00)00115-9
  2. Banerjee, I., R.C., Pangule and R.S., Kane (2011), "Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms", Adv. Mater., 23(6), 690-718. https://doi.org/10.1002/adma.201001215
  3. Chang, C.H., S.Y., Yeh, B.H., Lee, C.W., Hsu, Y.C., Chen, C.J., Chen, T.J., Lin, M.H.C., Chen, C.T., Huang and H.Y., Chen (2014), "Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials", J. Mater. Chem. B, 2(48), 8496-8503. https://doi.org/10.1039/C4TB00992D
  4. Chang, Y., S., Chen, Z., Zhang and S., Jiang (2006), "Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines", Langmuir, 22(5), 2222-2226. https://doi.org/10.1021/la052962v
  5. Chen, H.-Y., J.H., Lai, X., Jiang and J., Lahann (2008a), "Substrate-selective chemical vapor deposition of reactive polymer coatings", Adv. Mater., 20(18), 3474-3480. https://doi.org/10.1002/adma.200800455
  6. Chen, H.-Y., A.A., McClelland, Z., Chen and J., Lahann (2008b), "Solventless adhesive bonding using reactive polymer coatings", Anal. Chem., 80(11), 4119-4124. https://doi.org/10.1021/ac800341m
  7. Chen, S., J., Zheng, L., Li and S., Jiang (2005), "Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials", JACS 127(41), 14473-14478. https://doi.org/10.1021/ja054169u
  8. Chien, H.W., M.C., Keng, M.J., Wang, H.Y., Chen, S.T., Huang and W.B., Tsai (2014), "Conjugation of monocarboxybetaine molecules on Amino-Poly-p-xylylene films to reduce protein adsorption and cell adhesion", Langmuir, 30(47), 14257-14262. https://doi.org/10.1021/la502813n
  9. Chien, H.W., C.C., Tsai, W.B., Tsai, M.J., Wang, W.H., Kuo, T.C., Wei and S.T., Huang (2013), "Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption", Colloid. Surf. B Biointerf., 107, 152-159. https://doi.org/10.1016/j.colsurfb.2013.01.071
  10. Diaz Blanco, C., A., Ortner, R., Dimitrov, A., Navarro, E., Mendoza and T., Tzanov (2014), "Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach", ACS Appl. Mater. Interf., 6(14), 11385-11393. https://doi.org/10.1021/am501961b
  11. Feng, W. and S.P., Zhu (2005), "Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization", Langmuir, 21(13), 5980-5987. https://doi.org/10.1021/la050277i
  12. Huang, C.J. and Y.C., Chang (2014), "In situ surface tailoring with zwitterionic carboxybetaine moieties on self-assembled thin film for antifouling biointerfaces", Mater., 7(1), 130-142.
  13. Huang, J.J. and W.L., Xu (2011), "Efficient synthesis of zwitterionic sulfobetaine group functional polyurethanes via "Click" Reaction", J. Appl. Polym. Sci., 122(2), 1251-1257. https://doi.org/10.1002/app.34250
  14. Inoue, Y. and K., Ishihara (2010), "Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures", Colloid. Surf. B Biointerf., 81(1), 350-357. https://doi.org/10.1016/j.colsurfb.2010.07.030
  15. Jiang, S. and Z., Cao (2010), "Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications", Adv. Mater., 22(9), 920-932. https://doi.org/10.1002/adma.200901407
  16. Kolb, H.C., M.G., Finn and K.B., Sharpless (2001), "Click chemistry: diverse chemical function from a few good reactions", Angew. Chem. Int. Ed. Engl., 40(11), 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  17. Kuo, W.H., M.J., Wang, C.W., Chang, T.C., Wei, J.Y., Lai, W.B., Tsai and C., Lee (2012), "Improvement of hemocompatibility on materials by photoimmobilization of poly(ethylene glycol)", J. Mater. Chem., 22(19), 9991-9999. https://doi.org/10.1039/c2jm15435h
  18. Kuo, W.H., M.J., Wang, H.W., Chien, T.C., Wei, C., Lee and W.B., Tsai (2011), "Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation", Biomacromolecules, 12(12), 4348-4356. https://doi.org/10.1021/bm2013185
  19. Liu, Q.S., A., Singh, R., Lalani and L., Y., Liu (2012), "Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization", Biomacromolecules, 13(4), 1086-1092. https://doi.org/10.1021/bm201814p
  20. Maeta, E. and K., Ishihara (2014), "Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix", Biomater. Biomed. Eng., 1(3), 163-174.
  21. McArthur, S.L., K.M., McLean, P., Kingshott, H.A., W. St John, R.C., Chatelier and H.J., Griesser (2000), "Effect of polysaccharide structure on protein adsorption", Colloid Surf. B, 17(1), 37-48. https://doi.org/10.1016/S0927-7765(99)00086-7
  22. Nandivada, H., H.Y., Chen, L., Bondarenko and J., Lahann (2006), "Reactive polymer coatings that "Click"", Angew. Chem. Int. Ed. Engl., 45(20), 3360-3363. https://doi.org/10.1002/anie.200600357
  23. Nguyen, A.T., J., Baggerman, J.M.J., Paulusse, C.J.M., van Rijn and H., Zuilhof (2011), "Stable protein-repellent zwitterionic polymer brushes grafted from silicon nitride", Langmuir, 27(6), 2587-2594. https://doi.org/10.1021/la104657c
  24. Ratner, B.D. (1993), "The blood compatibility catastrophe", J. Biomed. Mater. Res., 27(3), 283-287. https://doi.org/10.1002/jbm.820270302
  25. Rostovtsev, V.V., L.G., Green, V.V., Fokin and K.B., Sharpless (2002), "A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes", Angew. Chem. Int. Ed. Engl., 114(14), 2596-2711.
  26. Shen, C.H. and J.C., Lin (2013), "Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers", Colloid. Surf. B Biointerf., 101, 376-383. https://doi.org/10.1016/j.colsurfb.2012.07.035
  27. Tornoe, C.W., C., Christensen and M., Meldal (2002), "Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides", J. Org. Chem., 67(9), 3057-3064. https://doi.org/10.1021/jo011148j
  28. Wu, L.X., Z., Guo, S., Meng, W., Zhong, Q.G., Du and L.S.L., Chou (2010), "Synthesis of a zwitterionic silane and Its application in the surface modification of silicon-based material surfaces for improved hemocompatibility", Acs. Appl. Mater. Interf., 2(10), 2781-2788. https://doi.org/10.1021/am1004249
  29. Yang, W., H., Xue, W., Li, J., Zhang and S., Jiang (2009), "Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma", Langmuir, 25(19), 11911-11916. https://doi.org/10.1021/la9015788
  30. Ye, S.H., C.A.J., Johnson, J.R., Woolley, H., Murata, L.J., Gamble, K., Ishihara and W.R., Wagner (2010), "Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity", Colloid. Surf. B Biointerf., 79(2), 357-364. https://doi.org/10.1016/j.colsurfb.2010.04.018
  31. Zhang, Z., S., Chen, Y., Chang and S., Jiang (2006), "Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings", J. Phys. Chem. B, 110(22), 10799-10804. https://doi.org/10.1021/jp057266i
  32. Zhao, C., L.Y., Li, Q.M., Wang, Q.M., Yu and J., Zheng (2011), "Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces", Langmuir, 27(8), 4906-4913. https://doi.org/10.1021/la200061h

Cited by

  1. Conjugation of Polysulfobetaine via Poly(pyrogallol) Coatings for Improving the Antifouling Efficacy of Biomaterials vol.6, pp.5, 2016, https://doi.org/10.1021/acsomega.0c04643