DOI QR코드

DOI QR Code

Effectiveness of Different Classes of Fungicides on Botrytis cinerea Causing Gray Mold on Fruit and Vegetables

  • Kim, Joon-Oh (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Shin, Jong-Hwan (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Gumilang, Adiyantara (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Chung, Keun (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Choi, Ki Young (Department of Controlled Agriculture, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
  • Received : 2016.05.01
  • Accepted : 2016.08.14
  • Published : 2016.12.01

Abstract

Botrytis cinerea is a necrotrophic pathogen causing a major problem in the export and post-harvest of strawberries. Inappropriate use of fungicides leads to resistance among fungal pathogens. Therefore, it is necessary to evaluate the sensitivity of B. cinerea to various classes of fungicide and to determine the effectiveness of different concentrations of commonly used fungicides. We thus evaluated the effectiveness of six classes of fungicide in inhibiting the growth and development of this pathogen, namely, fludioxonil, iprodione, pyrimethanil, tebuconazole, fenpyrazamine, and boscalid. Fludioxonil was the most effective ($EC_{50}$ < $0.1{\mu}g/ml$), and pyrimethanil was the least effective ($EC_{50}=50{\mu}g/ml$), at inhibiting the mycelial growth of B. cinerea. Fenpyrazamine and pyrimethanil showed relatively low effectiveness in inhibiting the germination and conidial production of B. cinerea. Our results are useful for the management of B. cinerea and as a basis for monitoring the sensitivity of B. cinerea strains to fungicides.

Keywords

References

  1. Beever, R. E. and Brien, H. M. R. 1983. A survey of resistance to the dicarboximide fungicides in Botrytis cinerea. N. Z. J. Agric. Res. 26:391-400. https://doi.org/10.1080/00288233.1983.10427048
  2. Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  3. Fernandez-Ortuno, D., Chen, F. and Schnabel, G. 2012. Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Dis. 96:1198-1203. https://doi.org/10.1094/PDIS-12-11-1049-RE
  4. Galvez, L., Gil-Serna, J., Garcia, M., Iglesias, C. and Palmero, D. 2016. Stemphylium leaf blight of garlic (Allium sativum) in Spain: taxonomy and in vitro fungicide response. Plant Pathol. J. 32:388-395. https://doi.org/10.5423/PPJ.OA.03.2016.0063
  5. Gang, G. H., Cho, H. J., Kim, H. S., Kwack, Y. B. and Kwak, Y. S. 2015. Analysis of fungicide sensitivity and genetic diversity among Colletotrichum species in sweet persimmon. Plant Pathol. J. 31:115-122. https://doi.org/10.5423/PPJ.OA.03.2015.0033
  6. Glantz, S. A. 1992. Primer of biostatistics. 3rd ed. McGraw-Hill, New York, NY, USA. 555 pp.
  7. Jang, S. A., Shin, Y. J. and Song, K. B. 2011. Effect of rapeseed protein-gelatin film containing grape fruit seed extract on 'Maehyang' strawberry quality. Int. J. Food Sci. Technol. 46:620-625. https://doi.org/10.1111/j.1365-2621.2010.02530.x
  8. Je, H. J., Ahn, J. W., Yoon, H. S., Kim, M. K., Ryu, J. S., Hong, K. P., Lee, S. D. and Park, Y. H. 2015. Development of cleaved amplified polymorphic sequence (CAPS) marker for selecting powdery mildew-resistance line in strawberry (Fragaria $\times$ ananassa Duchesne). Korean J. Hortic. Sci. Technol. 33:722-729 (in Korean). https://doi.org/10.7235/hort.2015.14133
  9. Kim, J. H., Campbell, B. C., Mahoney, N., Chan, K. L., Molyneux, R. J. and May, G. S. 2007. Enhancement of fludioxonil fungicidal activity by disrupting cellular glutathione homeostasis with 2, 5-dihydroxybenzoic acid. FEMS Microbiol. Lett. 270:284-290. https://doi.org/10.1111/j.1574-6968.2007.00682.x
  10. Kim, Y. K. and Xiao, C. L. 2010. Resistance to pyraclostrobin and boscalid in populations of Botrytis cinerea from stored apples in Washington state. Plant Dis. 94:604-612. https://doi.org/10.1094/PDIS-94-5-0604
  11. Koycu, N. D., Ozer, N. and Delen, N. 2012. Sensitivity of Botrytis cinerea isolates against some fungicides used in vineyards. Afr. J. Biotechnol. 11:1892-1899.
  12. Lee, S. W. and Chae, Y. S. 2012. Changes in fruit weight and soluble solids content of 'Seolhyang' strawberry by fruit setting order of the flower cluster. J. Agric. Life Sci. 46:105-111.
  13. Matheron, M. E. and Porchas, M. 2000. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and methalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 84:454-458. https://doi.org/10.1094/PDIS.2000.84.4.454
  14. Myresiotis, C. K., Karaoglanidis, G. S. and Tzavella-Klonari, K. 2007. Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis. 91:407-413. https://doi.org/10.1094/PDIS-91-4-0407
  15. Na, Y. W., Jeong, H. J., Cheong, J. W., Choi, H. G., Jeon, H. Y., Kim, D. S. and Rho, I. R. 2013. Breeding of 'Daewang' strawberry for forcing culture with good taste and fragrance. Korean J. Hortic. Sci. Technol. 31:648-651 (in Korean). https://doi.org/10.7235/hort.2013.13016
  16. Nam, M. H., Jung, S. K., Kim, N. G., Yoo, S. J. and Kim, H. G. 2005. Resistance analysis of cultivars and occurrence survey of Fusarium wilt on strawberry. Res. Plant Dis. 11:35-38 (in Korean). https://doi.org/10.5423/RPD.2005.11.1.035
  17. Nam, M. H., Lee, I. H. and Kim, H. G. 2014. Dipping strawberry plants in fungicides before planting to control anthracnose. Res. Plant Dis. 20:54-58 (in Korean). https://doi.org/10.5423/RPD.2014.20.1.054
  18. Ochiai, N., Fujimura, M., Oshima, M., Motoyama, T., Ichiishi, A., Yamada-Okabe, H. and Yamaguchi, I. 2002. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Biosci. Biotechnol. Biochem. 66:2209-2215. https://doi.org/10.1271/bbb.66.2209
  19. Petit, A. N., Vaillant-Gaveau, N., Walker, A. S., Leroux, P., Baillieul, F., Panon, M. L., Clement, C. and Fontaine, F. 2011. Effects of fludioxonil on Botrytis cinerea and on grapevine defence response. Phytopathol. Mediterr. 50:130-138.
  20. Shim, C. K., Kim, M. J., Kim, Y. K. and Jee, H. J. 2014. Evaluation of lettuce germplasm resistance to gray mold disease for organic cultivations. Plant Pathol. J. 30:90-95. https://doi.org/10.5423/PPJ.NT.07.2013.0064
  21. Shin, J. H., Han, J. H., Lee, J. K. and Kim, K. S. 2014. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on mycelial growth and colony formation. Plant Pathol. J. 30:397-406. https://doi.org/10.5423/PPJ.OA.08.2014.0078
  22. Sholberg, P. L., Bedford, K. and Stokes, S. 2005. Sensitivity of Penicillium spp. and Botrytis cinerea to pyrimethanil and its control of blue and gray mold of stored apples. Crop Prot. 24:127-134. https://doi.org/10.1016/j.cropro.2004.07.011
  23. Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x

Cited by

  1. C-coordinated O -carboxymethyl chitosan metal complexes: Synthesis, characterization and antifungal efficacy 2017, https://doi.org/10.1016/j.ijbiomac.2017.07.176
  2. Evaluation of the effectiveness of three fungicides against pathogens causing postharvest fruit rot of kiwifruit vol.47, pp.5, 2018, https://doi.org/10.1007/s13313-018-0591-7
  3. from Strawberry Fields in Spain vol.19, pp.1, 2018, https://doi.org/10.1094/PHP-12-17-0075-BR