DOI QR코드

DOI QR Code

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni (Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research) ;
  • Kim, Sang Gon (National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Kyu Young (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Ju-Gon (College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Sang-Ryeol (National Institute of Agricultural Science, Rural Development Administration) ;
  • Gupta, Ravi (College of Life and Resource Science, Dankook University) ;
  • Kim, Yong Hwan (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Wang, Yiming (Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research) ;
  • Kim, Sun Tae (College of Life and Resource Science, Dankook University)
  • Received : 2016.06.09
  • Accepted : 2016.08.04
  • Published : 2016.12.01

Abstract

Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

Keywords

References

  1. Acharya, K., Pal, A. K., Gulati, A., Kumar, S., Singh, A. K. and Ahuja, P. S. 2013. Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol. Biotechnol. 54:609-622. https://doi.org/10.1007/s12033-012-9603-y
  2. Andrade, L. B., Oliveira, A. S., Ribeiro, J. K., Kiyota, S., Vasconcelos, I. M., de Oliveira, J. T. and de Sales, M. P. 2010. Effects of a novel pathogenesis-related class 10 (PR-10) protein from Crotalaria pallida roots with papain inhibitory activity against root-knot nematode Meloidogyne incognita. J. Agric. Food Chem. 58:4145-4152. https://doi.org/10.1021/jf9044556
  3. Andreyev, A. Y., Kushnareva, Y. E. and Starkov, A. A. 2005. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.) 70:200-214. https://doi.org/10.1007/s10541-005-0102-7
  4. Bailey-Serres, J. and Mittler, R. 2006. The roles of reactive oxygen species in plant cells. Plant Physiol. 141:311. https://doi.org/10.1104/pp.104.900191
  5. Bantignies, B., Seguin, J., Muzac, I., Dedaldechamp, F., Gulick, P. and Ibrahim, R. 2000. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol. Biol. 42:871-881. https://doi.org/10.1023/A:1006475303115
  6. Chandler, P. M. and Robertson, M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:113-141. https://doi.org/10.1146/annurev.pp.45.060194.000553
  7. Chen, Z. Y., Brown, R. L., Damann, K. E. and Cleveland, T. E. 2007. Identification of maize kernel endosperm proteins associated with resistance to aflatoxin contamination by Aspergillus flavus. Phytopathology 97:1094-1103. https://doi.org/10.1094/PHYTO-97-9-1094
  8. Cheong, Y. H., Kim, C. Y., Chun, H. J., Moon, B. C., Park, H. C., Kim, J. K., Lee, S., Han, C., Lee, S. Y. and Cho, M. J. 2000. Molecular cloning of a soybean class III beta-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci. 154:71-81. https://doi.org/10.1016/S0168-9452(00)00187-4
  9. Chittoor, J. M., Leach, J. E. and White, F. F. 1997. Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 10:861-871. https://doi.org/10.1094/MPMI.1997.10.7.861
  10. Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M. and Shinozaki, K. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11:163. https://doi.org/10.1186/1471-2229-11-163
  11. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., Muthukrishnan, S. and Datta, S. K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly re-sistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98:1138-1145. https://doi.org/10.1007/s001220051178
  12. Daudi, A., Cheng, Z., O'Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M. and Bolwell, G. P. 2012. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275-287. https://doi.org/10.1105/tpc.111.093039
  13. de las Mercedes Dana, M., Pintor-Toro, J. A. and Cubero, B. 2006. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol. 142:722-730. https://doi.org/10.1104/pp.106.086140
  14. Duan, J., Zhang, M., Zhang, H., Xiong, H., Liu, P., Ali, J., Li, J. and Li, Z. 2012. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci. 196:143-151. https://doi.org/10.1016/j.plantsci.2012.08.003
  15. Edens, L., Heslinga, L., Klok, R., Ledeboer, A. M., Maat, J., Toonen, M. Y., Visser, C. and Verrips, C. T. 1982. Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18:1-12. https://doi.org/10.1016/0378-1119(82)90050-6
  16. Fernandes, H., Michalska, K., Sikorski, M. and Jaskolski, M. 2013. Structural and functional aspects of PR-10 proteins. FEBS J. 280:1169-1199. https://doi.org/10.1111/febs.12114
  17. Flores, T., Alape-Giron, A., Flores-Diaz, M. and Flores, H. E. 2002. Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities. Plant Physiol. 128:1291-1302. https://doi.org/10.1104/pp.010541
  18. Fraire-Velazquez, S., Rodriguez-Guerra, R. and Sanchez-Calderon, L. 2011. Abiotic and biotic stress response crosstalk in plants. In: Abiotic stress response in plants: physiological, biochemical and genetic perspectives, eds. by A. K. Shanker and B. Venkateswarlu, pp. 3-26. InTech, Rijeka, Croatia.
  19. Futamura, N., Tani, N., Tsumura, Y., Nakajima, N., Sakaguchi, M. and Shinohara, K. 2006. Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica. Tree Physiol. 26:51-62. https://doi.org/10.1093/treephys/26.1.51
  20. Gapper, C. and Dolan, L. 2006. Control of plant development by reactive oxygen species. Plant Physiol. 141:341-345. https://doi.org/10.1104/pp.106.079079
  21. Gupta, R., Lee, S. E., Agrawal, G. K., Rakwal, R., Park, S., Wang, Y. and Kim, S. T. 2015. Understanding the plantpathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Front. Plant Sci. 6:352.
  22. Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S. and Koshiba, T. 2004. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol. 45:550-559. https://doi.org/10.1093/pcp/pch063
  23. He, C., Lin, Z., McElroy, D. and Wu, R. 2009. Identification of a rice actin2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol. J. 7:227-239. https://doi.org/10.1111/j.1467-7652.2008.00393.x
  24. Hwang, D. H., Kim, S. T., Kim, S. G. and Kang, K. Y. 2007. Comprehensive analysis of the expression of twenty-seven beta-1, 3-glucanase genes in rice (Oryza sativa L.). Mol. Cells 23:207-214.
  25. Jiang, J., Li, J., Xu, Y., Han, Y., Bai, Y., Zhou, G., Lou, Y., Xu, Z. and Chong, K. 2007. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Plant Cell Environ. 30:690-699. https://doi.org/10.1111/j.1365-3040.2007.01663.x
  26. Jwa, N. S., Agrawal, G. K., Rakwal, R., Park, C. H. and Agrawal, V. P. 2001. Molecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem. Biophys. Res. Commun. 286:973-983. https://doi.org/10.1006/bbrc.2001.5507
  27. Kim, J. Y., Wu, J., Kwon, S. J., Oh, H., Lee, S. E., Kim, S. G., Wang, Y., Agrawal, G. K., Rakwal, R., Kang, K. Y., Ahn, I. P., Kim, B. G. and Kim, S. T. 2014. Proteomics of rice and Cochliobolus miyabeanus fungal interaction: insight into proteins at intracellular and extracellular spaces. Proteomics 14:2307-2318. https://doi.org/10.1002/pmic.201400066
  28. Kim, S. G., Wang, Y., Lee, K. H., Park, Z. Y., Park, J., Wu, J., Kwon, S. J., Lee, Y. H., Agrawal, G. K., Rakwal, R., Kim, S. T. and Kang, K. Y. 2013. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78:58-71. https://doi.org/10.1016/j.jprot.2012.10.029
  29. Kim, S. T., Cho, K. S., Jang, Y. S. and Kang, K. Y. 2001. Twodimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22:2103-2109. https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  30. Kim, S. T., Kang, S. Y., Wang, Y., Kim, S. G., Hwang, D. H. and Kang, K. Y. 2008a. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577-3587. https://doi.org/10.1002/pmic.200800183
  31. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. and Kang, K. Y. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569-3578. https://doi.org/10.1002/pmic.200400999
  32. Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H. and Kang, K. Y. 2008b. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep. 27:593-603. https://doi.org/10.1007/s00299-007-0485-6
  33. Kliebenstein, D. J., Monde, R. A. and Last, R. L. 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 118:637-650. https://doi.org/10.1104/pp.118.2.637
  34. Krishnaswamy, S., Baral, P. K., James, M. N. and Kav, N. N. 2011. Site-directed mutagenesis of histidine 69 and glutamic acid 148 alters the ribonuclease activity of pea ABR17 (PR10.4). Plant Physiol. Biochem. 49:958-962. https://doi.org/10.1016/j.plaphy.2010.10.010
  35. Li, J. B., Luan, Y. S. and Yin, Y. L. 2014. SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene 547:145-151. https://doi.org/10.1016/j.gene.2014.06.049
  36. Mackintosh, C. A., Lewis, J., Radmer, L. E., Shin, S., Heinen, S. J., Smith, L. A., Wyckoff, M. N., Dill-Macky, R., Evans, C. K., Kravchenko, S., Baldridge, G. D., Zeyen, R. J. and Muehlbauer, G. J. 2007. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep. 26:479-488. https://doi.org/10.1007/s00299-006-0265-8
  37. McGee, J. D., Hamer, J. E. and Hodges, T. K. 2001. Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol. Plant-Microbe Interact. 14:877-886. https://doi.org/10.1094/MPMI.2001.14.7.877
  38. Munis, M. F., Tu, L., Deng, F., Tan, J., Xu, L., Xu, S., Long, L. and Zhang, X. 2010. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem. Biophys. Res. Commun. 393:38-44. https://doi.org/10.1016/j.bbrc.2010.01.069
  39. Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C. and Paek, K. H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37:186-198. https://doi.org/10.1046/j.1365-313X.2003.01951.x
  40. Rizhsky, L., Davletova, S., Liang, H. and Mittler, R. 2004. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J. Biol. Chem. 279:11736-11743. https://doi.org/10.1074/jbc.M313350200
  41. Sarowar, S., Kim, Y. J., Kim, E. N., Kim, K. D., Hwang, B. K., Islam, R. and Shin, J. S. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 24:216-224. https://doi.org/10.1007/s00299-005-0928-x
  42. Sasaki, K., Iwai, T., Hiraga, S., Kuroda, K., Seo, S., Mitsuhara, I., Miyasaka, A., Iwano, M., Ito, H., Matsui, H. and Ohashi, Y. 2004. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol. 45:1442-1452. https://doi.org/10.1093/pcp/pch165
  43. Shi, W., Hao, L., Li, J., Liu, D., Guo, X. and Li, H. 2014. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep. 33:483-498. https://doi.org/10.1007/s00299-013-1548-5
  44. Srivastava, S., Fristensky, B. and Kav, N. N. 2004. Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol. 45:1320-1324. https://doi.org/10.1093/pcp/pch137
  45. Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M. and Fritig, B. 1993. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie 75:687-706. https://doi.org/10.1016/0300-9084(93)90100-7
  46. van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V. 1994. Recommendations for naming plant pathogenesisrelated proteins. Plant Mol. Biol. Report. 12:245-264. https://doi.org/10.1007/BF02668748
  47. van Loon, L. C. and van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97. https://doi.org/10.1006/pmpp.1999.0213
  48. Vogeli-Lange, R., Frundt, C., Hart, C. M., Nagy, F. and Meins, F. 1994. Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I ${\beta}$-1,3-glucanase B promoter. Plant Mol. Biol. 25:299-311. https://doi.org/10.1007/BF00023245
  49. Wang, Y., Kim, S. G., Wu, J., Kim, S. T. and Kang, K. Y. 2014. Differential proteome and secretome analysis during ricepathogen interaction. Methods Mol. Biol. 1072:563-572.
  50. Wrzaczek, M., Brosche, M., Salojarvi, J., Kangasjarvi, S., Idanheimo, N., Mersmann, S., Robatzek, S., Karpinski, S., Karpinska, B. and Kangasjarvi, J. 2010. Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol. 10:95. https://doi.org/10.1186/1471-2229-10-95
  51. Xie, Y. R., Chen, Z. Y., Brown, R. L. and Bhatnagar, D. 2010. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. J. Plant Physiol. 167:121-130. https://doi.org/10.1016/j.jplph.2009.07.004
  52. Zhang, L., Tian, L. H., Zhao, J. F., Song, Y., Zhang, C. J. and Guo, Y. 2009. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by twodimensional electrophoresis. Plant Physiol. 149:916-928.
  53. Zhou, X. J., Lu, S., Xu, Y. H., Wang, J. W. and Chen, X. Y. 2002. A cotton cDNA (GaPR-10) encoding a pathogenesisrelated 10 protein with in vitro ribonuclease activity. Plant Sci. 162:629-636. https://doi.org/10.1016/S0168-9452(02)00002-X

Cited by

  1. Proteomics survey of Solanaceae family: Current status and challenges ahead 2017, https://doi.org/10.1016/j.jprot.2017.05.016
  2. Proteome modifications on tomato under extreme high light induced-stress vol.16, pp.1, 2018, https://doi.org/10.1186/s12953-018-0148-2
  3. Phytohormones enhanced drought tolerance in plants: a coping strategy pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3364-5
  4. Identification of a Spotted Leaf Sheath Gene Involved in Early Senescence and Defense Response in Rice vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01274
  5. A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat vol.7, pp.3, 2018, https://doi.org/10.3390/pathogens7030058
  6. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00889
  7. SRAPs and EST-SSRs provide useful molecular diversity for targeting drought and salinity tolerance in Indian mustard pp.1573-4978, 2019, https://doi.org/10.1007/s11033-019-04590-4
  8. Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0210903