DOI QR코드

DOI QR Code

자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices

  • 유창호 (전북대학교 융합기술공학과) ;
  • 김성훈 (원광대학교 전자융합공학과)
  • 투고 : 2016.08.22
  • 심사 : 2016.08.29
  • 발행 : 2016.08.31

초록

자기 센서와 액추에이터는 산업과 의료 분야에서 광범위하게 사용되고 있다. 센서와 액추에이터의 기반의 통합시스템은 기계 및 전자 기기들의 일반적인 조합으로써 메카트로닉스로 정의된다. 최근에 자기 무선 센서와 액추에이터가 개발되어지고, 다양한 분야에서 사용되고 있다. 특히 이 메커니즘은 자성 물질 및 물리적 현상에 관한 것으로 자기의 세기의 따라 달라진다. 그러나 이들 연구의 경계는 명확하지 않다. 따라서, 자기 마이크로 로봇, 자기액추에이터 및 센서들을 포함한 새롭고 정확한 정의가 필요하다. 본 연구에서는 의공학 및 재활을 위한 자기 메카트로닉스의 진보되고 확장된 개념을 혈관 재활을 위한 무선 펌프 시스템과 모션 감지 시스템을 중심으로 소개하고자 한다.

Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

키워드

참고문헌

  1. D. H. Kim, et al., Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, Nature Materials 9, 165-171, 2010. https://doi.org/10.1038/nmat2591
  2. C. Chappert, A. Fert, and F. N. Van Dau, The emergence of spin electronics in data storage, Nature Materials 6, 813-824, 2007. https://doi.org/10.1038/nmat2024
  3. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, Journal of Physics: Condensed Matter 18, 2919-2934, 2006. https://doi.org/10.1088/0953-8984/18/38/S26
  4. G. Dogangil, O. Ergeneman, J. J. Abbott, S. Pane, H. Hall, S. Muntwyler, and B. J. Nelson, Toward Targeted Retinal Drug Delivery with Wireless Microrobots, IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1921-1925, 2008.
  5. M. Sendoh, K. Ishiyama, K. I. Arai, Direction and individual control of magnetic micromachine, IEEE Transactions Magnetics 39, 3232-3234, 2003. https://doi.org/10.1109/TMAG.2003.816731
  6. S. Nishijima, F. Mishima, T. Terada, S. Takeda, A study on magnetically targeted drug delivery system using superconducting magnet, Physica C: Superconductivity and its applications 1311, 463-465, 2007.
  7. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology, Analytical Chemistry 74, 2623-2636, 2002. https://doi.org/10.1021/ac0202435
  8. K. Belharet, D. Folio, and A. Ferreira, Endovascular navigation of a ferromagnetic microrobot using MRI-based predictive control, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2804-2809, 2010.
  9. N. Kyura and H. Oho, Mechatronics - An individual perspective, IEEE/ASME Transactions on Mechatronics 1, 10-15, 1996. https://doi.org/10.1109/3516.491405
  10. T. Mori, Mechatroincs, Yasakawa Internal Trademark Application Memo 21, 1, 1969.
  11. F. Harashima, M. Tomizuka, and T. Fukuda, Mechatronics - "What is it, Why, and How?, IEEE/ASME Transactions on Mechatronics 1, 1-4, 1996. https://doi.org/10.1109/TMECH.1996.7827930
  12. S. M. Song, C. H. Yu, K. Kim, J. J. Kim, W. K. Song, C. U. Hong, T. K. Kwon, Evaluation of human body effects during activities of daily living according to body weight support rate with active harness system, Journal of rehabilitation welfare engineering & assistive technology 10, 47-57, 2016.
  13. S. M. Song, C. H. Yu, K. Kim, J. J. Kim, W. K. Song, C. U. Hong, T. K. Kwon, Study on lower extremities activities pattern of ADL and treadmill gait according to harness body-weight support percentages, Journal of rehabilitation welfare engineering & assistive technology 9, 319-329, 2015.
  14. S. H. Kim, S. Hashi, K. Ishiyama, Actuation of novel blood pump by direct application of rotating magnetic field, IEEE Transactions Magnetics 48, 1869-1874, 2012. https://doi.org/10.1109/TMAG.2011.2177527
  15. H. Choi, J. Choi, S. Jeong, C. Yu, J. O. Park and S. Park, Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system, Smart Materials and Structures 18, 115017, 2009. https://doi.org/10.1088/0964-1726/18/11/115017
  16. S. H. Kim, C. H. Yu, K. Ishiyama, Tiny magnetic wireless pump: Fabrication of magnetic impeller and magnetic wireless manipulation for blood circulation in legs, Journal of Applied Physics 117, 17B311 2015. https://doi.org/10.1063/1.4916026
  17. T. Molet, Z. Huang, R. Boulic, D. Thalmann, An Animation Interface Designed for Motion Capture, Computer Animation 97, 77-85, 1997.
  18. S. Hashi, M. Toyoda, S. Tanukami, K. Ishiyama, Y. Okazaki, K. I Arai, Wireless Magnetic Motion Capture System for Multi-Marker Detection, IEEE Transactions on Magnetics 4, 3279-3281, 2006.