Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic

기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여

  • Received : 2016.12.04
  • Accepted : 2016.12.26
  • Published : 2016.12.31

Abstract

A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

보정된 수문모델은 기후변화와 지표피복변화가 하천의 유량과 수질, 그리고 하천퇴적물의 양에 미치는 영향을 정량적으로 파악할 수 있는 수단이 된다. 라오스 중부에 위치한 시방파이(Xe Bang Fai) 유역($10,064km^2$)은 태풍의 영향권에 놓여 있으며, 여름철은 높은 강우강도로 인해 매년 주기적인 범람의 위험을 안고 있다. 특히 현재 진행되고 있는 기후변화로 인해 태풍의 빈도와 강도가 크게 변할 것으로 예상되기 때문에 홍수로 인한 피해의 위험성은 점차 높아지고 있다. 이 연구의 목적은 Soil and Water Assessment Tool(SWAT) 모델을 이용하여 예상되는 기후변화 시나리오에 따라 하천유량에 미치는 영향을 예측하는 것이다. 이 연구에서 SWAT 모델은 2001년과 2005년 사이 기후 및 유량자료를 통해 보정하였으며, 2006년과 2010년의 예측치와 실측치 비교를 통해 검증하였다. 모의한 월별 유량과 실제 측정된 유량간의 일치도는 $R^2$ 값이 0.9(ENS>0.9)를 넘어 모델의 예측력이 높은 것으로 나타났다. 세 개의 기후모델(IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030)은 현재 진행되고 있는 기후변화로 인해 가까운 미래인 2030년에는 여름 몬순기간 동안 강우량이 약 10% 증가할 것으로 예측된다. 이 경우 우기인 7월과 9월 사이 시방파이 다리 부근에서 관측되는 하천의 유량은 현재보다 약 $800m^3/s$ 정도 증가할 것으로 예측되었다. 이 연구에서 보정된 SWAT 모델은 향후 홍수저감과 라오스의 지속가능한 발전정책의 수립에 효과적으로 사용될 것으로 기대된다.

Keywords

References

  1. Abbaspour, K. C., 2015, SWAT-Calibration and uncertainty programs, a user manual, Eawag: Swiss Federal institute of aquatic science and technology, 103.
  2. Abbaspour, K. C., Johnson, C. A., & Van Genuchten, M. T., 2004, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, Vadose Zone Journal, 3(4), 1340-1352. https://doi.org/10.2136/vzj2004.1340
  3. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., ... & Srinivasan, R., 2007, Modelling hydrology and water quality in the pre-alpine/ alpine Thur watershed using SWAT, Journal of hydrology, 333(2), 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  4. Andersson, L., Wilk, J., Todd, M. C., Hughes, D. A., Earle, A., Kniveton, D., ... & Savenije, H. H., 2006, Impact of climate change and development scenarios on flow patterns in the Okavango River, Journal of Hydrology, 331(1), 43-57. https://doi.org/10.1016/j.jhydrol.2006.04.039
  5. Arabi, M., Frankenberger, J. R., Engel, B. A., & Arnold, J. G., 2008, Representation of agricultural conservation practices with SWAT, Hydrological Processes, 22(16), 3042-3055. https://doi.org/10.1002/hyp.6890
  6. Arnell, N. W., 1999, Climate change and global water resources. Global environmental change, 9, S31-S49. https://doi.org/10.1016/S0959-3780(99)00017-5
  7. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R., 1998, Large area hydrologic modeling and assessment part I: Model development, Journal of the American Water Resources Association, 34, 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  8. Baird, I. G., Shoemaker, B. P., & Manorom, K., 2015, The people and their river, the World Bank and its dam: Revisiting the Xe Bang Fai River in Laos. Development and Change, 46(5), 1080-1105. https://doi.org/10.1111/dech.12186
  9. Bates, B., Kundzewicz, Z. W., Wu, S., & Palutikof, J., 2008, climate change and Water: technical Paper vi. Intergovernmental Panel on Climate Change (IPCC).
  10. Bazzaz, F. A., & Sombroek, W. G. (Eds.), 1996, Global climate change and agricultural production: direct and indirect effects of changing hydrological, pedological, and plant physiological processes. Food & Agriculture Org.
  11. Borah, D. K., & Bera, M., 2004, Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications, Transactions of the ASAE, 47(3), 789. https://doi.org/10.13031/2013.16110
  12. Champathangkham, S., & Pandey, A., 2013, Hydrological Modelling of Xebangfai river basin in Lao PDR: A Case Study Using SWAT Model, Journal of Indian Water Resources Society, 33(2).
  13. Craig, R. K., 2010, 'Stationarity is Dead'-Long Live Transformation: Five Principles for Climate Change Adaptation Law. Harvard Environmental Law Review, 34(1), 9-75.
  14. Debele, B., Srinivasan, R., & Parlange, J. Y., 2008, Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins, Environmental Modeling & Assessment, 13(1), 135-153. https://doi.org/10.1007/s10666-006-9075-1
  15. Delgado, J. M., Merz, B., & Apel, H., 2012, A climate-flood link for the lower Mekong River. Hydrology and Earth System Sciences, 16(5), 1533-1541. https://doi.org/10.5194/hess-16-1533-2012
  16. Eastham, J., Mpelasoka, F., Mainuddin, M., Ticehurst, C., Dyce, P., Hodgson, G., ... & Kirby, M., 2008, Mekong river basin water resources assessment: Impacts of climate change.
  17. Fewtrell, D., & Kay, L., 2008, Health impact assessment for sustainable water management, Water Intelligence Online, 7, 9781780401874.
  18. Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G., 2007, The soil and water assessment tool: historical development, applications, and future research directions, Transactions of the ASABE, 50(4), 1211-1250. https://doi.org/10.13031/2013.23637
  19. Gronsten, H. A., & Lundekvam, H, 2006, Prediction of surface runoff and soil loss in southeastern Norway using the WEPP Hillslope model, Soil and Tillage Research, 85(1), 186-199. https://doi.org/10.1016/j.still.2005.01.008
  20. IPCC, 2014, Climate Change 2014-Impacts, Adaptation and Vulnerability: Regional Aspects. Intergovernmental Panel on Climate Change, Cambridge University Press.
  21. Kalcic, M.M., Chaubey, I. and Frankenberger, J., 2015, Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries, International Journal of Agricultural and Biological Engineering, 8(3), pp.69-80.
  22. Kottelat, M., 2015, The fishes of the Nam Theun and Xe Bangfai drainages, Laos. Hydroecologie Appliquee.
  23. Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Doll, P., Jimenez, B., Miller, K., ... & Shiklomanov, I., 2008, The implications of projected climate change for freshwater resources and their management.
  24. Lao Embassy, 2011, Two Tropical Storms Caused Serious Floods in Laos, Report on Flood in Laos 2011. Accessible at http://laoembassy.com/Flood%20in%20Laos%202011.pdf
  25. LNMC, 2011a, Water Resources Study in the Xe Bang Fai River Basin, Lao National Mekong Committee Report on Lao National Pilot Study 2011.
  26. LNMC, 2011b, Xe Bang Fai Water Resources and Flood Mapping, Lao National Mekong Committee Report on Lao National Pilot Study 2011.
  27. Morgan, R. P. C., 2001, A simple approach to soil loss prediction: a revised Morgan-Morgan-Finney model, Catena, 44(4), 305-322. https://doi.org/10.1016/S0341-8162(00)00171-5
  28. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L., 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153
  29. MRC, 2006, Annual Flood Report 2005, Mekong River Commission, Flood Management and Mitigation Programme (FMMP), Vientiane, Lao PDR, 82. ISSN 1728 3248. Accessible at http://www.mrcmekong.org/assets/Publications/basin-reports/Annual-Mekong-Flood-Report-2005.pdf
  30. MRC, 2008, Annual Flood Report 2007, Mekong River Commission, Flood Management and Mitigation Programme (FMMP), Vientiane, Lao PDR, 96. ISSN 1728 3248. Accessible at http://www.mrcmekong.org/assets/Publications/basin-reports/Annua-Mekong-Flood-Report-2007.pdf
  31. MRC, 2009, Annual Flood Report 2008, Mekong River Commission, Flood Management and Mitigation Programme (FMMP), Vientiane, Lao PDR, 104. ISSN 1728 3248. Accessible at http://www.mrcmekong.org/assets/Publications/basin-reports/Annual-Mekong-Flood-Report-2008.pdf
  32. MRC, 2010, Hydrological and Flood Hazards in the Focal Areas, Mekong River Commission, Flood Management and Mitigation Programme, Component 2: Structural Measures & Flood Proofing in the Lower Mekong Basin, Final Report, Vol.2B. Accessible at http://cnmc.gov.kh/cnmc/jdownloads/Reports/V2B_Hydr_Haz_&_FLood_Haz_Focal_Areas_final_FMMP.pdf
  33. MRC, 2011, Annual Flood Report 2010, Mekong River Commission, Flood Management and Mitigation Programme (FMMP), Vientiane, Lao PDR, 79. ISSN 1728 3248. Accessible at http://www.mrcmekong.org/assets/Publications/basin-reports/Annual-Mekong-Flood-Report-2010.pdf
  34. MRC, 2014a, Exploratory analysis of climate change factor ranges, Mekong River Commission, The-Final Report, Revision 3.1, June 2014.
  35. MRC, 2015, Annual Mekong Flood Report 2013, Office of the Secretariat in Phonom Penh, Mekong River Commission (MRC), Phonom Penh. Accessible at http://www.mrcmekong.org/assets/Publications/basin-reports/Annual-Mekong-Flood-Report-2013.pdf
  36. Nash, J. E., & Sutcliffe, J. V., 1970, River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  37. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Willams, J. R., 2011, Soil and Water Assessment Tool: the theoretical documentation (version 2009), Grassland, Soil and Water Research Laboratory- Agricultural Research Service-Blackland Research Center-Texas AgriLife Research.
  38. NT2, 2003, Environment Assessment and Management Plan, NAM THEUN II (NT2) Power Company Ltd., EcoLao; Norplan, Volume 3-Annexes.
  39. Parry, M. L. (Ed.), 2007, Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.
  40. Piman, T., Lennaerts, T., & Southalack, P., 2013, Assessment of hydrological changes in the lower Mekong Basin from Basin-Wide development scenarios. Hydrological Processes, 27(15), 2115-2125. https://doi.org/10.1002/hyp.9764
  41. Rasanen, T. A., Koponen, J., Lauri, H., & Kummu, M., 2012, Downstream hydrological impacts of hydropower development in the Upper Mekong Basin. Water Resources Management, 26(12), 3495-3513. https://doi.org/10.1007/s11269-012-0087-0
  42. Rosenthal, W. D., Srinivasan, R., & Arnold, J. G., 1995, Alternative river management using a linked GIShydrology model, Transactions of the ASAE, 38(3), 783-790. https://doi.org/10.13031/2013.27892
  43. Saleh, A., & Du, B., 2004, Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas, Transactions of the ASAE, 47(4), 1039. https://doi.org/10.13031/2013.16577
  44. Santhi, C., J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck., 2001, Validation of the SWAT Model on A Large River Basin with Point and Nonpoint Sources. J. American Water Resources Association. 37(5), 1169-118. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  45. Setegn, S. G., Srinivasan, R., Melesse, A. M., & Dargahi, B., 2010, SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia, Hydrological Processes, 24(3), 357-367. https://doi.org/10.1002/hyp.7457
  46. Shao, H., & Chu, L., 2013, Water-quality Engineering in Natural Systems: Fate and Transport Processes in the Water Environment, CLEAN-Soil, Air, Water, 41(8), 829-830. https://doi.org/10.1002/clen.201390024
  47. Sheng, X. B., Sun, J. Z., & Liu, Y. X., 2003, Effect of landuse and land-cover change on nutrients in soil in Bashang area, China, Journal of environmental sciences, 15(4), 548-553. https://doi.org/10.3321/j.issn:1001-0742.2003.04.019
  48. Shrestha, B., Babel, M. S., Maskey, S., Griensven, A. V., Uhlenbrook, S., Green, A., & Akkharath, I., 2013, Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR, Hydrology and Earth System Sciences, 17(1), 1-20. https://doi.org/10.5194/hess-17-1-2013
  49. Sioudom, K., 2013, Basin Profile for the Nam Theun/Nam Kading, Nam Hinboun and Xe Bang Fai, Lao PDR. Project report: Challenge Program on Water & Food Mekong project MK3 "Optimizing the management of a cascade of reservoirs at the catchment level". ICEM - International Centre for Environmental Management, Hanoi Vietnam, 2013.
  50. Snidvongs, A., Choowaew, S., & Chinvanno, S., 2003, Impact of climate change on water and wetland resources in Mekong river basin: Directions for preparedness and action, Change, 2, 2.
  51. SONNASINH, V., 2009, Lao PDR's country flood report for 2008, Mekong River Commission, 68.
  52. Sperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A., ... & Zhou, T., 2013, The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics, 41(9-10), 2711-2744. https://doi.org/10.1007/s00382-012-1607-6
  53. Van Liew, M. W., Arnold, J. G., & Garbrecht, J. D., 2003, Hydrologic simulation on agricultural watersheds: Choosing between two models, Transactions of the ASAE, 46(6), 1539. https://doi.org/10.13031/2013.15643
  54. Vastila, K., Kummu, M., Sangmanee, C., & Chinvanno, S., 2010, Modelling climate change impacts on the flood pulse in the Lower Mekong floodplains, Journal of Water and Climate Change, 1(1), 67-86. https://doi.org/10.2166/wcc.2010.008
  55. Wang, G., Yang, H., Wang, L., Xu, Z., & Xue, B., 2014, Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters, Hydrological Processes, 28(3), 1032-1042. https://doi.org/10.1002/hyp.9645
  56. Wu, W., Hall, C. A., & Scatena, F. N., 2007, Modelling the impact of recent land-cover changes on the stream flows in northeastern Puerto Rico, Hydrological Processes, 21(21), 2944-2956. https://doi.org/10.1002/hyp.6515
  57. Zhang, Y., Xia, J., Shao, Q., & Zhai, X., 2013, Water quantity and quality simulation by improved SWAT in highly regulated Huai River basin of China, Stochastic Environmental Research and Risk Assessment, 27(1), 11-27. https://doi.org/10.1007/s00477-011-0546-9