DOI QR코드

DOI QR Code

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites

대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향

  • Cho, Yong Bum (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 조용범 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과)
  • Received : 2016.05.23
  • Accepted : 2016.09.01
  • Published : 2016.09.30

Abstract

In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

본 연구에서는 셀룰로스계 천연섬유인 대나무와 poly(lactic acid) (PLA)로 구성된 펠렛을 압출공정으로 제조하고, 여러 가지 함량의 대나무섬유/PLA 바이오복합재료를 사출공정을 통해 성형하였다. 바이오복합재료의 굴곡, 인장, 충격 특성 및 열변형온도에 미치는 대나무섬유의 수처리 영향을 조사하였다. 천연섬유의 열안정성, 바이오복합재료의 굴곡특성, 인장탄성률 및 충격특성은 섬유 함량은 물론 수처리 유 무에 의존한 반면, 열변형온도는 주로 수처리에 의해 영향을 받았다. 바이오복합재료의 기계적 특성과 충격특성의 증가는 이를 구성하고 있는 대나무섬유와 PLA 매트릭스 사이의 계면결합력이 대나무섬유의 수처리에 의해 향상되었기 때문이다. 연구결과는 친환경적이고 작업친화적인 물을 이용한 천연섬유의 전처리가 바이오복합재료의 성능을 향상시키는데 기여할 수 있다는 것을 제시하여 준다.

Keywords

References

  1. A. K. Mohanty, L. T. Drzal, D. Hokens, and M. Misra, Polym. Mater. Sci. Eng., 85, 594 (2001).
  2. E. Bodros, I. Pillin, N. Montrelay, and C. Baley, Compos. Sci. Technol., 67, 462 (2007). https://doi.org/10.1016/j.compscitech.2006.08.024
  3. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003). https://doi.org/10.1016/S0266-3538(03)00096-4
  4. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol., 13, 460 (2002).
  5. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 68, 424 (2008). https://doi.org/10.1016/j.compscitech.2007.06.022
  6. D. Cho, H.-J. Kim, and L. T. Drzal, "Polymer Composites Volume 3: Biocomposites", S. Thomas, K. Joseph, S. K. Malhotra, K. Goda, M. S. Sreekala, Wiley-VCH Verlag GmbH & Co, KGaA, Weinhein (2013).
  7. J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, and S. J. Jung, J. Biobased Mater. Bioener., 1, 331 (2007). https://doi.org/10.1166/jbmb.2007.007
  8. H. S. Lee, D. Cho, and S. O. Han, Macromol. Res., 16, 411 (2008). https://doi.org/10.1007/BF03218538
  9. S. G. Ji, W. H. Park, D. Cho, and B. C. Lee, Macromol. Res., 18, 919 (2010). https://doi.org/10.1007/s13233-010-0916-z
  10. S. G. Ji, J. H. Hwang, D. Cho, and H.-J. Kim, J. Adhes. Sci. Technol., 27, 1359 (2013). https://doi.org/10.1080/01694243.2012.697365
  11. R. Tokoro, F. G. Shin, and M. W. Yipp, J. Mater. Sci., 24, 3483 (1989). https://doi.org/10.1007/BF02385729
  12. S. Jain and R. Kumar, J. Mater. Sci., 27, 4598 (1992). https://doi.org/10.1007/BF01165993
  13. F. T. Wallenberger and N. E. Weston, "Natural Fibers, Plastics and Composites", Kluwer Academic Publishers (2004).
  14. S. Lee and S. Wang, Composite: Part A, 37, 80 (2006). https://doi.org/10.1016/j.compositesa.2005.04.015
  15. J. Gassan and A. Bledzki, Polym. Compos., 20, 62 (1999). https://doi.org/10.1002/pc.10335
  16. S. Lee, B. Lee, H. Kim, S. Kim, and Y. G. Eom, Mokchae Konghak, 37, 310 (2009).
  17. M. M. Thwe and K. Liao, Composites: Part A, 33, 43 (2002). https://doi.org/10.1016/S1359-835X(01)00071-9
  18. D. Wu, Y. Zhang, M. Zhang, and W. Zhou, Euro. Polym. J., 44, 2171 (2008). https://doi.org/10.1016/j.eurpolymj.2008.04.023
  19. N. Nagasawa, A. Kaneda, S. Kanazawa, T. Yagi, H. Mitome, F. Yoshii, and M. Tamada, Nuclear Instru. Meth. Phys. Res. B, 236, 611 (2005). https://doi.org/10.1016/j.nimb.2005.04.052
  20. T. Yu, J. Ren, S. Li, and Y. Li, Composites: Part A, 41, 499 (2010). https://doi.org/10.1016/j.compositesa.2009.12.006
  21. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, Composites: Part A, 40, 404 (2009).
  22. K. Oksman, M. Skrifvars, and J.-F. Selin, Compos. Sci. Technol., 63, 1317 (2003). https://doi.org/10.1016/S0266-3538(03)00103-9
  23. B. Bax and J. Mussig, Compos. Sci. Technol., 68, 1601 (2008). https://doi.org/10.1016/j.compscitech.2008.01.004
  24. Y. Woo and D. Cho, Adv. Compos. Mater., 22, 451 (2013). https://doi.org/10.1080/09243046.2013.843831
  25. H.-J. Kwon, J. Sunthornvarabhas, J.-W. Park, J.-H. Lee, H.-J. Kim, K. Piyachomkwan, K. Sriroth, and D. Cho, Composites: Part B, 56, 232 (2014). https://doi.org/10.1016/j.compositesb.2013.08.003
  26. M. S. Islam, K. L. Pickering, and N. J. Foreman, Polym. Degrad. Stab., 95, 59 (2010). https://doi.org/10.1016/j.polymdegradstab.2009.10.010
  27. D. Cho, J. M. Seo, H. S. Lee, C. W. Cho, S. O. Han, and W. H. Park, Adv. Compos. Mater., 16, 299 (2007). https://doi.org/10.1163/156855107782325249