DOI QR코드

DOI QR Code

Synthesis and characterization of polymer electrolyte membrane for fuel cell including sulfonated bis (4-fluorophenyl) phenylphosphine oxide

술폰화된 비스(4-플루오로페닐) 페닐포스핀옥사이드를 포함한 연료전지용 고분자 전해질막의 합성과 특성분석

  • Yoo, Eun Sil (Graduate school, Department of Energy Storage.Conversion Engineering, Hydrogen & Fuel Cell Research Center, Chonbuk National University) ;
  • Nahm, Kee Suk (Graduate school, Department of Energy Storage.Conversion Engineering, Hydrogen & Fuel Cell Research Center, Chonbuk National University) ;
  • Yoo, Dong Jin (Graduate school, Department of Energy Storage.Conversion Engineering, Hydrogen & Fuel Cell Research Center, Chonbuk National University)
  • 유은실 (전북대학교 대학원, 공과대학교 에너지저장.변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단, 수소연료전지센터) ;
  • 남기석 (전북대학교 대학원, 공과대학교 에너지저장.변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단, 수소연료전지센터) ;
  • 유동진 (전북대학교 대학원, 공과대학교 에너지저장.변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단, 수소연료전지센터)
  • Received : 2016.11.21
  • Accepted : 2016.12.19
  • Published : 2016.12.30

Abstract

This study relates to a polymer electrolyte membrane for improved performance fuel cell, were researched with respect to properties required for driving a fuel cell. The bis(4-fluorophenyl)phenyl phosphine oxide was sulfonated using fuming sulfuric acid. Synthetic hydrophilic oligomer and the hydrophobic oligomer and the block copolymers were prepared via aromatic nucleophilic substitution polycondensation. A block copolymer structure and degree of sulfonation was analyzed by $^1H$-NMR and gel permeation chromatography(GPC) analysis. Thermal stability was confirmed by thermogravimetric analysis(TGA), block copolymer was stable at high temperature(>$200^{\circ}C$), The ion conductivity was measured in order to demonstrate the performance of fuel cell. Synthesis membrane was the increase of temperature was improved conductivity up to 58 mS/cm due to the influence of the developed ion clusters. The phase separation of the polymer was observed to make AFM analysis.

본 연구는 연료전지용 고분자 전해질 막의 성능 향상에 관한 것으로서 연료전지를 구동하기 위해 요구되는 전해질 막의 특성에 대하여 연구하였다. Bis(4-fluorophenyl)phenyl phosphine oxide를 발연 황산을 이용하여 양이온($H^+$)을 전도할 수 있는 술폰산기를 치환시켜 주었다. 친수성 올리고머와 소수성 올리고머를 각각 합성하고, 블록 공중합체는 친수성 올리고머와 소수성 올리고머를 방향족 친핵성 치환반응에 의해 제조하였다. 블록 공중합체의 구조 및 술폰화도(DS)는 $^1H$-NMR, 겔 침투 크로마토그래피 (GPC) 분석에 의해 확인하였다. 열적 안정성은 열중량 분석(TGA)을 통해 확인하였으며, 본 연구에서 제조한 블록 코폴리머는 $200^{\circ}C$ 이상의 온도 조건에서 내열성을 나타내었다. 또한, 이온전도성은 연료전지 전해질 막으로서의 성능을 증명하기 위해 이온전도도 시험을 수행하였다. 제조한 막은 온도가 증가할수록 발달된 이온클러스터의 영향으로 최대 58 mS/cm의 이온전도성을 보였다. 블록 코폴리머의 미세 상 분리의 특성은 AFM분석을 통해 확인하였다.

Keywords

References

  1. M. Winter, R. j. Brodd, What are batteries, fuel cells, and supercapacitors?, J. Am. Chem. Soc., 2004;104;4245-4269
  2. P. Thounthong., S. Rael., B. Davat., Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications, J. Power Sources., 2009;193;376-385 https://doi.org/10.1016/j.jpowsour.2008.12.120
  3. J. G. Kim, S. H. Lee., C. H. Ryu., G. J. Hwang., Preparation of cation exchange membrane using poly benzimidazole and its characteristic, J. Memb. Sci., 2012;22;256-271
  4. J. H. Lee, J. O. Won., Polymer electrolyte membranes for fuel cell, Polymer Science and Technology., 2003;14;418-430
  5. H. Liao., G Xiao and D Yan., High perfomance proton exchange membranes obtained by adjusting the distribution and content of sulfonic acid side groups, Chem. Commun., 2013;49;3979-3981 https://doi.org/10.1039/c3cc41200h
  6. S. Michael., K. K. Dieter., A. . T., M. Joachim., Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermo oxidatively stable proton conducting ionomers, Macromolecules., 2007;40;598-607 https://doi.org/10.1021/ma062324z
  7. S. Zhong., X. Cui., H. Cai., T. Fu., C. Zhao., H. Na., Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications, J. Power Sources., 2007;164;65-72 https://doi.org/10.1016/j.jpowsour.2006.10.077
  8. S. H. de Almeida and Y. Kawano, Thermal behavior of Nafion membrane, J Therm Anal Calorim., 1999;58;569-577 https://doi.org/10.1023/A:1010196226309
  9. B. C. Bae., K. Miyatake., M. Watanabe., Sulfonated poly(arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. synthesis and properties, Macromolecules., 2010;43;2684-2691 https://doi.org/10.1021/ma100291z
  10. J. J. Ahn., Choi. Y. W., Yang. T. H., Kim. C. S., Bae. B. C., Synthesis and characterization of sulfonated poly (arylene ether Sulfone) multiblock copolymer for PEMFC application, Korea Science., 2012;23;416-467
  11. Y. S. Kim., Hickner., M. A., D. Limin., P. B. S., McGrath, James E., Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability, J. Membr. Sci., 2004;234;317-326
  12. K. B. Wiles, F. Wang, J. E. McGrath., Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM-based fuel cell systems. I. synthesis and characterization, J. Polymer. Sci., Part A: Polym. Chem., 2005;43;2964-2976 https://doi.org/10.1002/pola.20744