DOI QR코드

DOI QR Code

기공 메커니즘에 대한 CO2의 역할은 무엇인가?

What are the Possible Roles of CO2 on Stomatal Mechanism?

  • 이준상 (충북대학교 생물교육학과)
  • Lee, Joon Sang (Dept. of Biology Education, Chungbuk National Univ.)
  • 투고 : 2015.10.20
  • 심사 : 2016.01.19
  • 발행 : 2016.02.29

초록

$CO_2$는 기공 메커니즘에 어떤 영향을 주는가? 햇빛에 의해 유도된 기공 열림에서 독립적인 $CO_2$의 효과를 분리해서 본다는 것은 어려운 일이기 때문에, $CO_2$에 의한 기공 열림 메커니즘은 아직 명확하게 밝혀지지 않은 실정이다. 기공은 또한 $CO_2$ 농도에 따라 다르게 반응 할 수 있다. 기공 열림과 닫힘의 식물의 생체적인 리듬도 관여하므로, $CO_2$의 반응에 대한 해석은 많은 요소들을 고려해야 한다. 세포간극 내강 ($C_i$)의 감소된 $CO_2$에서는 기공을 열린다는 것이 일반적으로 정해진 사실이다. 기공 열림의 정도를 결정하는 것은 삼투 물질이고, $CO_2$가 삼투 물질의 수송에 영향을 준다고 가정하는 것이 $CO_2$가 기공 메커니즘에 영향을 주는 유일한 방법이다. 그러나 $CO_2$가 어떻게 공변세포 내의 삼투물질 농도에 영향을 주는지 그 메커니즘은 불분명하다. 지금까지, $CO_2$는 공변세포의 삼투퍼텐셜을 증가시키는 이온과 유기물이 어떻게 공변세포 막을 통한 수송 메커니즘이 이루어지는지는 알려진 것이 없다. 따라서 이 연구에서는 $CO_2$에 의한 삼투물질들의 공변세포 막 투과성에 대해 초점을 두었다. 잎을 일정한 농도의 $CO_2$에 노출할 때 $CO_2$-관련된 반응들이 나타난다. 빛에 의한 기공 열림의 가설은 $K^+$, $Cl^-$, 슈크로스 그리고 말산$^{2-}$를 포함하는 공변세포 내 삼투물질 농도의 증가에 있다. $CO_2$$H^+$를 세포 밖으로 방출하는 것을 나타내는 막의 과분극 (hyperpolarization)을 유도했다는 보고가 있다. 이는 $CO_2$가 막 투과성에 관련된 첫 번째 증거이다. 온전한 잎에서 $CO_2$는 빛에 의해 유도된 막의 과분극보다 3~4 배까지 공변세포의 막 과분극을 유도했다. 이러한 결과들은 $CO_2$가 막 투과성에 영향을 주는 인지질 이중층과 수송단백질의 물리적인 특성에 변화를 초래한다는 것을 의미한다.

How does $CO_2$ affect on the stomatal mechanism? The mechanism of stomatal opening by $CO_2$ is not clear as it is difficult to see $CO_2$ effect on light-induced stomatal opening. Furthermore, stomata may react differently according to the concentration of $CO_2$. The significance of the possible endogenous rhythms must consider to understand on $CO_2$-related response. It is clear that $CO_2$ has an effect on the accumulation of osmotic materials which determines the degree of stomatal apertures because it is known that stomata open in the condition of the reduced $CO_2$ concentration. However, it is not fully understood how $CO_2$ leads to the stomatal opening. It has been thought that $CO_2$ can not affect on the ion fluxes which determines the increase of osmotic potential in guard cells. However, in this study, the changes of guard cell membrane permeability by $CO_2$ have been focused on. There are many reports that $CO_2$ related reactions are dominant when the leaf is exposed to certain a mount of $CO_2$. The hypothesis of the stomatal opening by light is based on the increase of osmotic materials in guard cells including $K^+$, $Cl^-$, sucrose and $malate^{2-}$. It was reported that $CO_2$ induced a big hyperpolarization indicating that $H^+$ was extruded to the cell outside. It was also found that $CO_2$ caused guard cell membrane hyperpolarization in the intact leaf up to 3 or 4 times higher than that of light induced membrane hyperpolarization. These results represent that $CO_2$ can affect on the change of physical characteristics which affects on the change of the membrane permeability.

키워드

참고문헌

  1. Flexas, J., Barbou, M.M., Brendel, O., Cabrera, H.M., Carriqui, M. and A. Diaz-Espejo(2012) Mesophyll diffusion conductance to $CO_2$. Plant Sci. 194:70-84.
  2. Hsiao, T.C., Allaway, W.G. and L.T. Evans(1973) Action spectra for guard cell Rb2+uptake and stomatal opening inVicia faba. Plant Physiol. 51:82-88. https://doi.org/10.1104/pp.51.1.82
  3. Jarvis, P.G. and J.I.L. Morison(1981) The control of transpiration and photosynthesis by the stomata. In: Jarvis, P.G., T.A. Mansfield(eds), Stomatal physiology, Cambridge University Press, England, pp. 247-279.
  4. Kim, C.Y.(2012) Stomatal responses of $C_3$ and $C_4$ cyperus species (Cyperaceae) in Korea to elevated $CO_2$ concentration. M.S.D. Thesis, Sungshin Women's University, Seoul, 357pp.
  5. Kim, D.J., J.S. Lee(2007) Current theories for mechanism of stomatal opening. J. Plant Biol. 50: 523-526. https://doi.org/10.1007/BF03030704
  6. Kinoshita, T., Emi, T., Tominaga, M., Sakamoto, K., Shigenaga, A., Doi, M. and K. Shimazaki(2003) Blue-light and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol. 133: 1453-1463. https://doi.org/10.1104/pp.103.029629
  7. Kuiper, P.J.C.(1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecioodoris. Plant Physiol. 39: 952-955. https://doi.org/10.1104/pp.39.6.952
  8. Lee, J.S., D.J.F. Bowling(1992) Effect of the mesophyll on stomatal opening in Commelina communis. J. Exp. Bot. 43: 951-957. https://doi.org/10.1093/jxb/43.7.951
  9. Lee, J.S., D.J.F. Bowling(1993a) The effect of a mesophyll factor on the swelling of guard cell protoplasts of Commelina communis L. J. Plant Physiol. 142: 203-207. https://doi.org/10.1016/S0176-1617(11)80964-8
  10. Lee, J.S., D.J.F. Bowling(1993b) Influence of the mesophyll on the change of electrical potential difference of guard cells induced by red light and $CO_2$ in Commelina communis L. and Tradescantina virginiana L. J. Plant Biol. 36: 383-389.
  11. Lee, J.S., D.J.F. Bowling (1995) Influence of the mesophyll on stomatal opening. Australian J. Plant Physiol. 22: 357-363. https://doi.org/10.1071/PP9950357
  12. Lee, Y., Choi, Y.B., Suh, S., Lee, J.S., Assmann, S.M., Joe, C.O., Kelleher, J.F. and R.C. Crain(1996) Abscisic acid-induced phosphoinositide turn over in guard cell protoplasts of Vicia faba. Plant Physiol. 110: 987-996. https://doi.org/10.1104/pp.110.3.987
  13. Lee, J.S.(2010) Stomatal opening mechanism of CAM plants. J. Plant Biol. 53: 19-23. https://doi.org/10.1007/s12374-010-9097-8
  14. Lee, J.S. (2013) Do really close stomata by soil drying ABA produced in the roots and transported in transpiration stream? American J. Plant Sci. 4: 169-173. https://doi.org/10.4236/ajps.2013.41022
  15. Lin, C.(2000) Plant blue-light receptors. Trends. Plant Sci. 5: 337-342. https://doi.org/10.1016/S1360-1385(00)01687-3
  16. Melis, A. and E. Zeiger(1982) Modulation of guard cell photophsphorylation by $CO_2$. Plant Physiol. 69: 642-647. https://doi.org/10.1104/pp.69.3.642
  17. Morison, J.I.L.and R.M. Gifford(1983) Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol. 71: 789-796. https://doi.org/10.1104/pp.71.4.789
  18. Morison, J.I.L.(1987) Intercellular concentration and stomatal response to $CO_2$. Proceeding of the 1st Symposium on Stomatal function, Stanford, California, pp. 229-251.
  19. Ogawa, T., Ishikawa, K., Shimada, K. and K. Shibata(1978) Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta 142: 61-65. https://doi.org/10.1007/BF00385121
  20. Outlaw, W.(1989) Critical examination of the quantitative evidence for and against $CO_2$ fixation by guard cells. Physiologia Plantarum 77: 275-281. https://doi.org/10.1111/j.1399-3054.1989.tb04981.x
  21. Ramos, C. and A.E. Hall(1982) Relationships between leaf conductance, intercellular $CO_2$ partial pressure and $CO_2$ uptake rate in two $C_3$ and $C_4$ plant species. Photosynthetica 16: 343-355.
  22. Ramos, C. and A.E. Hall(1983) Effects of photofluorescence rate and intercellular partial pressure on leaf conductance and $CO_2$ uptake rate in Capsicum and Amaranthus. Photosynthetica 17: 34-42.
  23. Singh, S.K., Badgujar, G., Reddy, V.R., Fleisher, D.H. and J. A. Bounce(2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth $CO_2$ and phosphorus nutrition in cotton. J. Plant Physiol. 170: 801-813. https://doi.org/10.1016/j.jplph.2013.01.001
  24. Singsaas, E.L., Ort, D.R., E. and H. Delucia(2004) Elevated $CO_2$ effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ. 27: 41-50. https://doi.org/10.1046/j.0016-8025.2003.01123.x
  25. Spanswick, R.M.(1973) Evidence for an electrogenic ion pump in Nitella translucence. Biochim. Biophysics acta 289: 387-398.
  26. Zeiger E.(1983) The biology of stomatal guard cells. Ann. Rev. Plant Physiol. 34: 441-475. https://doi.org/10.1146/annurev.pp.34.060183.002301
  27. Zeiger, E. and L. Taiz(2010) Plant physiology(5nd ed.). Sinauer Associates Inc., Sunderland, 881pp.