DOI QR코드

DOI QR Code

Estimation on Average Residence Time of Particulate Matters in Geoje Bay using Particle Tracking Model

입자추적모델을 이용한 거제만의 입자물질 평균체류시간 산정

  • Kim, Jin-Ho (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Hong, Sok-Jin (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Won-Chan (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Jeong-Bae (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Hyung-Chul (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Dong-Myung (Department of Ecological Engineering, Pukyong National University)
  • 김진호 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 김정배 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 어장환경과) ;
  • 김동명 (부경대학교 생태공학과)
  • Received : 2015.10.14
  • Accepted : 2016.02.25
  • Published : 2016.02.28

Abstract

The residence time measures the time spent by a water parcel or a pollutant in a given water body. So residence time of water is widely used as an indicator of how a substance will remain in an estuary and it is used to enable comparisons among different water bodies. To estimate residence time of particulate matters from land and aquaculture, EFDC that includes particle tracking model was applied to the Geoje Bay. Modelled average residence time was about 65 days in the inner part. It meant it takes about 2 months for substance from land and aquaculture to be transported to the outside of Geoje Bay. The results indicated that residence time varied spatially throughout Geoje Bay depending on tidal flushing and, in general conditions, tidal flushing exerts the greatest influence to the flushing of Geoje Bay. This reveals relationships between residence times of particulate matters and physical properties of the bay and Geoje Bay is vulnerable to water quality problem.

해역에서의 체류시간은 제한된 영역을 채우는 수체나 오염물질이 잔류하는 시간을 의미하며, 서로 다른 수체간의 물리적 특성을 비교하는 데 사용되고 있다. 거제만으로 유입되는 육상기원 또는 양식기원 입자물질의 잔류시간을 알아보기 위해 입자추적모델이 포함된 EFDC를 이용하여 입자물질 체류시간을 계산하였다. 계산된 입자물질의 체류시간은 내만에서 약 65일이었는데, 이 결과는 거제만 내측으로 유입되는 입자물질이 외해에 도달하기까지 약 2달 이상의 시간이 소요됨을 의미한다. 이 체류시간은 거제만 전역에 걸쳐 조석의 흐름에 따라 다르게 나타났으며, 해역에 유입된 입자물질의 거동이 해역의 물리적 특성에 의해 결정됨을 의미한다. 입자물질 체류시간의 공간적인 분포특성을 통해 거제 내만의 해수교환이 원활하지 않은 것을 알 수 있으며, 이로 인해 수질오염문제에 취약할 수 있다는 것을 알 수 있다.

Keywords

References

  1. Abdelrman, M. A.(2005), Simplified modeling of flushing and residence time in 42 embayment in New England, USA, with special attention to Greenwich Bay, Rhode Island, Estuarine, Coastal and Shelf Science, Vol. 62, pp. 339-351. https://doi.org/10.1016/j.ecss.2004.09.021
  2. Braunschweig, F., F. Martins, P. Chambel and R. Neves(2003), A methodology to estimate renewal time scales in estuaries: the Tagus estuary case, Ocean Dynamics, Vol. 53, pp. 137-145. https://doi.org/10.1007/s10236-003-0040-0
  3. Cavalcante, G. H., B. Kjerfve and D. A. Feary(2012), Examination of residence time and its relevance to water quality within a coastal mega-structure: The Palm Jumeirah Lagoon, Journal of Hydrology, Vol. 468-469, pp. 111-119. https://doi.org/10.1016/j.jhydrol.2012.08.027
  4. Craig, P. M.(2009), Implementation of a Lagrangian particle tracking sub-model for the environmental fluid dynamics code, Dynamic Solutions-International, LLC, Knoxville, TN, USA.
  5. Craig, P. M.(2011), User's Manual for EFDC_Explorer: A Pre/Post Processor for the environmental Fluid Dynamics Code, Dynamic Solutions-International, LLC, Knoxville, TN, USA.
  6. Jung, W. S., W. C. Lee, S. J. Hong, J. L. Kim and D. M. Kim(2014), Hypoxia estimation of coastal bay through estimation of stratification degree, J. Kor. Soc. Mar. Environ & Safety, Vol. 20, No. 5, pp. 511-525. https://doi.org/10.7837/kosomes.2014.20.5.511
  7. Kenov, I. A., A. C. Garcia and R. Neves(2012), Residence time of water in the Mondego estuary (Portugal), Estuarine, Coastal and Shelf Science, Vol. 106, pp. 13-22. https://doi.org/10.1016/j.ecss.2012.04.008
  8. Kim, J. H. and I. C. Lee(2011), A numerical prediction of residence time according to freshwater influx in enclosed bay, J. Kor. Soc. Mar. Environ & Safety, Vol. 17, No. 4, pp. 339-343. https://doi.org/10.7837/kosomes.2011.17.4.339
  9. Lee, J. S., K. H. Kwon and I. H. Park(2014), Analysis of littoral currents by the coupled hydrodynamic model, J. Kor. Soc. Mar. Environ & Safety, Vol. 20, No. 2, pp. 247-258. https://doi.org/10.7837/kosomes.2014.20.2.247
  10. Mellor, G. L. and T. Yamada(1982), Development of turbulence closure model for geophysical fluid problem, Review of Geophysical and Space Physics, Vol. 20, pp. 851-875. https://doi.org/10.1029/RG020i004p00851
  11. Park, J. S., H. C. Kim, W. J. Choi, W. C. Lee and C. G. Park(2002), Estimating the carrying capacity of a coastal bay for oyster culture, J. Kor. Fish. Soc., Vol. 35, No. 4, pp. 395-407.
  12. Park, S. E., W. C. Lee, S. J. Hong, H. C. Kim and J. H. Kim(2011), Variation in residence time and water exchange rate by release time of pollutants over a tidal cycle in Masan Bay, J. Kor. Soc. Marine. Env. Eng., Vol. 14, No. 4, pp. 249-256.
  13. Shen, J. and L. Haas(2004), Calculating age and residence time in the tidal York River using three-dimensional model experiments, Estuarine, Coastal and Shelf Science, Vol. 61, pp. 449-461. https://doi.org/10.1016/j.ecss.2004.06.010
  14. Wolanski, E.(2007), Estuarine Ecohydrology, Elsevier, Amsterdam, p. 157.

Cited by

  1. Hydrodynamic Effects on Growth Performance of the Pacific Oyster Crassostrea gigas Cultured in Suspension in a Temperate Bay on the Coast of Korea vol.40, pp.6, 2017, https://doi.org/10.1007/s12237-017-0252-z
  2. 자란만 패류양식해역의 물리환경 설명을 위한 평균체류시간 산정 vol.29, pp.3, 2016, https://doi.org/10.5322/jesi.2020.29.3.273