DOI QR코드

DOI QR Code

Ischemic Infarcion Model by Middle Cerebral Artery Occlusion using Allogenic Blood Clot in Beagle Dogs

비글견에서 동종혈전 색전술을 이용한 중간대뇌동맥의 허혈성 뇌경색 모델

  • Kim, Younghwan (College of Veterinary Medicine, Chungnam National University) ;
  • Choi, Sooyoung (College of Veterinary Medicine, Chungnam National University) ;
  • Lee, Kija (College of Veterinary Medicine, Kyungpook National University) ;
  • Han, Woosok (College of Medicine, Konyang University) ;
  • Choi, Hojung (College of Veterinary Medicine, Chungnam National University) ;
  • Lee, Youngwon (College of Veterinary Medicine, Chungnam National University)
  • 김영환 (충남대학교 수의과대학) ;
  • 최수영 (충남대학교 수의과대학) ;
  • 이기자 (경북대학교 수의과대학) ;
  • 한우석 (건양대학교 의과학대학) ;
  • 최호정 (충남대학교 수의과대학) ;
  • 이영원 (충남대학교 수의과대학)
  • Accepted : 2015.08.14
  • Published : 2016.02.29

Abstract

The purpose of this study was to establish reproducible ischemic infarction model using allogenic blood clot in beagle dogs and identify induced ischemic lesion after middle cerebral artery occlusion using magnetic resonance imaging (MRI) and histopathologic findings. Twenty eight male beagle dogs with no evidence of neurologic disease were experimented. Allogenic embolus was made using a healthy beagle dog. After internal carotid artery (ICA) was exposure, 16G catheter was introduced through the ICA. The dog was administered 0.3 ml blood clot for 15 seconds followed by 3 ml of saline for 15 seconds. MRI scans were performed with 1.5T to evaluate ischemic lesion at 7 days after middle cerebral artery occlusion procedure. Evaluation parameters of MRI include location, distribution, infarction type, margin, shape, mass effect and intensity of T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid attenuated inversion recovery (FLAIR) sequence, diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC). On MRI, all dogs (28/28) showed focal or multifocal lesion including telencephalon and thalamus lesions, especially caudate nucleus (24/28). These lesions had well-defined margin from adjacent brain parenchyma, none or mild mass effect and various shape. Most of dogs appeared hyperintensity on T1WI, T2WI, FLAIR, and DWI/ADC, corresponding to chronic infarction. These lesions were histopathologically confirmed atrophic changes and unstained lesion. In conclusion, MRI is the useful method to provide information about ischemic infarction in dogs and the best reproducible ischemic infarction model was developed by using allogenic blood clot.

Keywords

References

  1. Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J 2010; 4: 34-38.
  2. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture neurological and pathological evaluation of an improved model. Stroke 1996; 27: 1616-1623. https://doi.org/10.1161/01.STR.27.9.1616
  3. Christoforidis GA, Rink C, Kontzialis MS, Mohammad Y, Koch RM, Abduljalil AM, Bergdall VK, Roy S, Khanna S, Slivka AP, Knopp MV, Sen CK. An endovascular canine middle cerebral artery occlusion model for the study of leptomeningeal collateral recruitment. Invest Radiol 2011; 46: 34-40. https://doi.org/10.1097/RLI.0b013e3181f0cbc7
  4. Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke 1991; 22: 877-883. https://doi.org/10.1161/01.STR.22.7.877
  5. De Ley G, Weyne J, Demeester G, Stryckmans K, Goethals P, Leusen I. Streptokinase treatment versus calcium overload blockade in experimental thromboembolic stroke. Stroke 1989; 20: 357-361. https://doi.org/10.1161/01.STR.20.3.357
  6. Evans HE, De Lahunta A. The heart and arteries. In: Miller's Anatomy of the Dog, 4th ed. New York: Saunders. 2012: 428-504.
  7. Fujioka M, Taoka T, Matsuo Y, Hiramatsu KI, Sakaki T. Novel brain ischemic change on MRI. Delayed ischemic hyperintensity on T1-weighted images and selective neuronal death in the caudoputamen of rats after brief focal ischemia. Stroke 1999; 30: 1043-1046. https://doi.org/10.1161/01.STR.30.5.1043
  8. Garosi L, McConnell JF, Platt SR, Barone G, Baron JC, de Lahunta A, Schatzberg SJ. Clinical and topographic magnetic resonance characteristics of suspected brain infarction in 40 dogs. J Vet Intern Med 2006; 20: 311-321. https://doi.org/10.1111/j.1939-1676.2006.tb02862.x
  9. Garosi L, McConnell J. Ischaemic stroke in dogs and humans: a comparative review. J Small Anim Pract. 2005; 46: 521-529. https://doi.org/10.1111/j.1748-5827.2005.tb00281.x
  10. Goncalves R, Carrera I, Garosi L, Smith PM, Fraser McConnell J, Penderis J. Clinical and topographic magnetic resonance imaging characteristics of suspected thalamic infarcts in 16 dogs. Vet J 2011; 188: 39-43. https://doi.org/10.1016/j.tvjl.2010.03.024
  11. Graham SM, McCullough LD, Murphy SJ. Animal models of ischemic stroke: balancing experimental aims and animal care. Comp Med 2004; 54: 486-496.
  12. Inoue T, Kobayashi S, Sugita K. Dye injection method for the demonstration of territories supplied by individual perforating arteries of the posterior communicating artery in the dog. Stroke 1985; 16: 684-686. https://doi.org/10.1161/01.STR.16.4.684
  13. Kalimo H, Kaste M, Haltia M. Vascular diseases. In: Greenfield's neuropathology London: Arnold. 2002: 281-355.
  14. Kang BT, Lee JH, Jung DI, Park C, Gu SH, Jeon HW, Jang DP, Lim CY, Quan FS, Kim YB, Cho ZH, Woo EJ, Park HM. Canine model of ischemic stroke with permanent middle cerebral artery occlusion: clinical and histopathological findings. J Vet Sci 2007; 8: 369-376. https://doi.org/10.4142/jvs.2007.8.4.369
  15. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema: a new experimental study of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 1986; 8: 1-8. https://doi.org/10.3995/jstroke.8.1
  16. Kuwabara S, Uno J, Ishikawa S. A new model of brainstem ischemia in dogs. Stroke 1988; 19: 365-371. https://doi.org/10.1161/01.STR.19.3.365
  17. Laing RJ, Jakubowski J, Laing RW. Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 1993; 24: 294-297. https://doi.org/10.1161/01.STR.24.2.294
  18. Liu S, Hu WX, Zu QQ, Lu SS, Xu XQ, Sun L, Zhou WZ, Shi HB. A novel embolic stroke model resembling lacunar infarction following proximal middle cerebral artery occlusion in beagle dogs. J Neurosci Methods 2012; 209: 90-96. https://doi.org/10.1016/j.jneumeth.2012.06.009
  19. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91. https://doi.org/10.1161/01.STR.20.1.84
  20. Marcoux F, Morawetz R, Crowell R, DeGirolami U, Halsey J. Differential regional vulnerability in transient focal cerebral ischemia. Stroke 1982; 13: 339-346. https://doi.org/10.1161/01.STR.13.3.339
  21. Molinari GF. Experimental cerebral infarction. I. Selective segmental occlusion of intracranial arteries in the dog. Stroke 1970; 1: 224-237. https://doi.org/10.1161/01.STR.1.4.224
  22. Ogun CO, Tastekin G, Kiresi D, Eser O, Ustun ME. A new reversible ischemic neurologic deficit model in dogs. Med Sci Monit 2008; 14: BR214.
  23. Okada Y, Shima T, Yokoyama N, Uozumi T. Comparison of middle cerebral artery trunk occlusion by silicone cylinder embolization and by trapping. J Neurosurg 1983; 58: 492-499. https://doi.org/10.3171/jns.1983.58.4.0492
  24. Okada Y, Shima T, Oki S, Uozumi T. Experimental microsurgical embolectomy after middle cerebral artery embolization in the dog. J Neurosurg 1983; 58: 259-266. https://doi.org/10.3171/jns.1983.58.2.0259
  25. Purdy PD, Devous MD, Batjer HH, White CL, Meyer Y, Samson DS. Microfibrillar collagen model of canine cerebral infarction. Stroke 1989; 20: 1361-1367. https://doi.org/10.1161/01.STR.20.10.1361
  26. Purdy PD, Devous MD, White CL, Batjer HH, Samson DS, Brewer K, Hodges K. Reversible middle cerebral artery embolization in dogs without intracranial surgery. Stroke 1989; 20: 1368-1376. https://doi.org/10.1161/01.STR.20.10.1368
  27. Rink C, Christoforidis G, Abduljalil A, Kontzialis M, Bergdall V, Roy S, Khanna S, Slivka A, Knopp M, Sen CK. Minimally invasive neuroradiologic model of preclinical transient middle cerebral artery occlusion in canines. Proc Natl Acad Sci USA 2008; 105: 14100-14105. https://doi.org/10.1073/pnas.0806678105
  28. Sacco RL, Boden-Albala B, Gan R, Chen X, Kargman DE, Shea S, Paik MC, Hauser WA. Stroke incidence among white, black, and hispanic residents of an urban community the Northern Manhattan Stroke Study. Am J Epidemiol 1998; 147: 259-268. https://doi.org/10.1093/oxfordjournals.aje.a009445
  29. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 1998; 29: 2162-2170. https://doi.org/10.1161/01.STR.29.10.2162
  30. Shaibani A, Khawar S, Shin W, Cashen T, Schirf B, Rohany M, Kakodkar S, Carroll T. First results in an MR imagingcompatible canine model of acute stroke. Am J Neuroradiol 2006; 27: 1788-1793.
  31. Tamura A, Graham D, McCulloch J, Teasdale G. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981; 1: 53-60. https://doi.org/10.1038/jcbfm.1981.6
  32. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44: 85-95. https://doi.org/10.1093/ilar.44.2.85
  33. Victor M, AH R. Cerebrovascular diseases. In: Adams and Victor's principles of neurolog, 6th ed. New York, NY: McGraw-Hill Inc. 1997; 1997: 777-873.
  34. Weinstein PR, Anderson GG, Telles DA. Neurological deficit and cerebral infarction after temporary middle cerebral artery occlusion in unanesthetized cats. Stroke 1986; 17: 318-324. https://doi.org/10.1161/01.STR.17.2.318
  35. Wessmann A, Chandler K, Garosi L. Ischaemic and haemorrhagic stroke in the dog. Vet J 2009; 180: 290-303. https://doi.org/10.1016/j.tvjl.2007.12.023
  36. Young AR, Touzani O, Derlon JM, Sette G, MacKenzie ET, Baron JC. Early reperfusion in the anesthetized baboon reduces brain damage following middle cerebral artery occlusion: a quantitative analysis of infarction volume. Stroke 1997; 28: 632-638. https://doi.org/10.1161/01.STR.28.3.632