DOI QR코드

DOI QR Code

Fully automated ethanolic loop synthesis of the [11C]OMAR

  • Jang, Keun Sam (Department of Nuclear Medicine, Chonnam National University Medical School) ;
  • Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Medical School)
  • 투고 : 2016.12.02
  • 심사 : 2016.12.17
  • 발행 : 2016.12.30

초록

We have successfully synthesized of 4-cyano-1-(2,4-dichlorophenyl)-5-(4-[$^{11}C$]methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxzmide ([$^{11}C$]OMAR), which has been shown a progressing candidate to human brain PET study, from fully automated loop method using ethanol as the only solvent for the entire manufacturing process. The radiochemical yield of [$^{11}C$]OMAR was observed in $4.1{\pm}0.2%$ with $4990{\pm}384Ci/mmol$ of the specific activity and total synthesis time was about 45 minutes after HPLC purification (n = 3, decay corrected) from ethanolic loop system, which was exhibited to better results compared with conventional methods. Ethanolic loop chemistry is favorable and efficient method by simplifies manufacturing procedures as well as satisfied suitable for human administration.

키워드

참고문헌

  1. Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implations. Pharmacol Rev 2011;63:461-470. https://doi.org/10.1124/pr.110.003491
  2. Talwar R, Potluri VK. Cannabinoid 1 (CB1) receptor-pharmacology, role in pain and recent developments in emerging CB1 agonist. CNS Neurol Disord Drug Targets 2011;10:536-544. https://doi.org/10.2174/187152711796235005
  3. Basu S, Dittel BN. Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res 2011;51:26-38. https://doi.org/10.1007/s12026-011-8210-5
  4. Pertwee RG. Receptors and channels targeted by synthetic cannabinoid receptor agonist and antagonists. Curr Med Chem 2010;17:1360-1381. https://doi.org/10.2174/092986710790980050
  5. Le Foll B, Goldberg SR. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther 2005;312:875-883. https://doi.org/10.1124/jpet.104.077974
  6. Black SC. Cannabinoid receptor antagonists and obesity. Curr Opin Invest Drugs 2004;5:389-394.
  7. Serra G, Fratta W. A possible role for the endocannabinoid system in the neurobiology of depression. Clin Pract Epidemiol Mental Health 2007;3:25-36. https://doi.org/10.1186/1745-0179-3-25
  8. Dean B, Sundram S, Bradbury R, Scarr E, Copolov D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density on cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 2001;103:9-15. https://doi.org/10.1016/S0306-4522(00)00552-2
  9. Horti AG, Van Laere K. Development of radioligands for in vivo imaging of type 1 cannabinoid receptors (CB1) in human brain. Curr Pharm Des 2008;14:3363-3383. https://doi.org/10.2174/138161208786549380
  10. Evens N, Bormans GM. Non-invasive imaging of the type 2 cannabinoid receptor, focus on positron emission tomography. Curr Top Med Chem 2010;10:1527-1543. https://doi.org/10.2174/156802610793176819
  11. Donohue SR, Varnas K, Jia Z, Gulyas B, Pike VW, Halldin C. Synthesis and in vitro autoradiographic evaluation of a novel high-affinity radioiodinated ligand for imaging brain cannabinoid subtype-1 receptors. Bioorg Med Chem Lett 2009;19:6209-6212. https://doi.org/10.1016/j.bmcl.2009.08.092
  12. Tsujikawa T, Zoghbi SS, Hong J, Donohue SR, Jenko KJ, Gladding RL, Halldin C, Pike VW, Innis RB, Fujita M. In vitro and in vivo evaluation of $^{11}C-SD5025$, a novel PET radioligand for human brain imaging of cannabinoid CB1 receptors. Neuroimage 2014;84:733-741. https://doi.org/10.1016/j.neuroimage.2013.09.043
  13. Donohue SR, Krushinski JH, Pike VW, Chernet E, Phebus L, Chesterfield AK, Felder CC, Halldin C, Schaus JM. Synthesis, EX Vivo evaluation, and radiolabeling of potent 1,5-diphenylpyrrolidin-2-one cannabinoid subtype-1 receptor ligands as candidates for In Vivo imaging. J Med Chem 2008;51:5833-5842. https://doi.org/10.1021/jm800416m
  14. Fan H, Ravert HT, Holt DP, Dannals RF, Horti AG. Synthesis of 1-(2,4-dichlorophenyl)-4-cyano-5-(4-[$^{11}C$] methoxyphenyl)-N-(piperidin-1-yl-1H-pyrazole-3-carboxamide ([$^{11}C$]JHU75528) and 1-(2-bromophenyl)-4-cyano-5-(4-[$^{11}C$]methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide ([$^{11}C$]JHU75575) as potential radioligands for PET imaging of cerebral cannabinoid receptor. J Labelled Compd Radiopharm 2006;49:1021-1036. https://doi.org/10.1002/jlcr.1125
  15. Horti AG, Fan H, Kuwabara H, Hiltor J, Ravert HT, Holt DP, Alexander M, Kumar A, Rahmim A, Scheffel U, Wong DF, Dannals RF. $^{11}C$-JHU75528: A radiotracer for PET imaging of CB1 cannabinoid receptors. J Nucl Med 2006;47:1689-1696.
  16. Liu P, Lin LS, Hamill TG, Jewell JP, Lanza TJ, Gibson RE, Krause SM, Ryan C, Eng W, Sanabria S, Tong X, Wang J, Levorse DA, Owens KA, Fong TM, Shen CP, Lao J, Kumar S, Yin W, Payack JF, Springfield SA, Hargreaves R, Burns HD, Goulet MT, Kagmann WK. Discovery of N-{(1S,2S)-2-(3-cyanophenyl)-3-[4-(2-[$^{18}F$]fluoroethoxy) phenyl]-2-methylpropyl}-2-methyl-2-[(5-methylpyridin-2-yl)oxy]propanamide, a cannabinoid-1 receptor positron emission tomography tracer suitable for clinical use. J Med Chem 2007;50:3427-3430. https://doi.org/10.1021/jm070131b
  17. Terry GE, Hirvonen J, Liow JS, Zoghbi SS, Gladding R, Tauscher JT, Schaus JM, Phebus L, Felder CC, Morse CL, Donohue SR, Pike VW, Halldin C, Innis RB. Imaging and quantification of cannabinoid CB1 receptors in human and monkey brains using $^{18}F$-Labeled inverse agonist radioligands. J Nucl Med 2010;51:112-120. https://doi.org/10.2967/jnumed.109.067074
  18. Gao Y, Ravert HT, Dannals RF, Horti, AG. 5-(4-(2-[$^{18}F$] fluoroethoxy)phenyl-1-(2,4-dichlorophenyl)-4-cyano-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide ([$^{18}F$]JHU88868), a novel radioligand for PET imaging of cannabinoid type 1 receptors. Curr Radiopharmaceuticals 2009;2:195-198. https://doi.org/10.2174/1874471010902030195
  19. Scott PJH. Methods for the incorporation of carbon-11 to generate radio-pharmaceuticals for PET imaging. Angew Chem Int Ed 2009;48:6001-6004. https://doi.org/10.1002/anie.200901481
  20. Shao X, Schnau PL, Fawaz MV, Scott PJH. Enhanced radiosyntheses of [$^{11}C$]raclopride and [$^{11}C$]DASB using ethanolic loop chemistry. Nucl Med Biol 2013;40:109-116. https://doi.org/10.1016/j.nucmedbio.2012.09.008
  21. Shao X, Kilbourn MR. A simple modification of GE Tracerlab FX C Pro for preparation of [$^{11}C$]carfentanil and [$^{11}C$]raclopride. Appl Radiat Isot 2009;67:602-605. https://doi.org/10.1016/j.apradiso.2008.12.013
  22. Shao X, Fawaz MV, Jang KS, Scott PJH. Ethanolic carbon-11 chemistry: The introduction of green radiochemistry. Appl Radiat Isot 2014;89:125-129. https://doi.org/10.1016/j.apradiso.2014.01.033
  23. ICH Harmonised Tripartite Guideline Impurities: Guideline for Residual Solvents Q3C(R5). 2011:1-29.
  24. Gao M, Wang M, Zheng QH. A new high-yield synthetic route to PET CB1 radioligands [$^{11}C$]OMAR and its analogs. Bioorg Med Chem Lett 2012;22:3704-3709. https://doi.org/10.1016/j.bmcl.2012.04.030