DOI QR코드

DOI QR Code

Application of extraction chromatographic techniques for separation and purification of emerging radiometals 44/47Sc and 64/67Cu

  • Vyas, Chirag K. (Radiation Instrumentation Division, Korea Atomic Energy Research Institute) ;
  • Park, Jeong Hoon (Radiation Instrumentation Division, Korea Atomic Energy Research Institute) ;
  • Yang, Seung Dae (Radiation Instrumentation Division, Korea Atomic Energy Research Institute)
  • Received : 2016.12.01
  • Accepted : 2016.12.22
  • Published : 2016.12.30

Abstract

Considerably increasing interest in using the theranostic isotopes/ isotope pairs of radiometals like $^{44/47}Sc$ and $^{64/67}Cu$ for diagnosis and/or therapeutic applications in the nuclear medicine procedures necessitates its reliable production and supply. Separation and purification of no-carrier-added (NCA) isotopes from macro quantitates of the irradiated target matrix along with other impurities is a cardinal procedure amongst several other steps involved in its production. Multitudinous methods including but not limited to liquid-liquid (solvent) extraction, extraction chromatography (EXC), ion exchange, electrodeposition and sublimation are routinely applied either solitarily or in combination for the separation and purification of radioisotopes depending on their production routes, radioisotope of interest and impurities involved. However, application of EXC though has shown promises towards the numerous separation techniques have not received much attention as far as its application prospects in the field of nuclear medicine are concerned. Advances in the recent past for application of the EXC resins in separation and purification of the several medically important radioisotopes at ultra-high purity have shown promising behavior with respect to their operation simplicity, acidic and radiolytic stability, separation efficiencies and speedy procedures with the enhanced and excellent extraction abilities. In this mini review we will be talking about the recent developments in the application and the use of EXC techniques for the separation and purification of $^{44/47}Sc$ and $^{64/67}Cu$ for medical applications. Furthermore, we will also discuss the scientific and practical aspects of EXC in the view of separation of the NCA trace amount of radionuclides.

Keywords

References

  1. Vallabhajosula S. Molecular imaging: radiopharmaceuticals for PET and SPECT. Springer- Verlag; 2009. p. 45-58.
  2. Schmor P. Review of cyclotrons for production of radioactive isotopes for medical and industrial applications. RAST 2011; 4:103-116.
  3. Cyclotron produced radionuclides: principle and practice: Technical reports series no. 465, IAEA; 2010.
  4. NSAC isotopes subcommittee, Meeting isotopes needs and capturing opportunities for the future: the 2015 long range plan for the DOE-NP isotope program; 2015. p. 77-106.
  5. NSAC isotopes subcommittee, Meeting isotopes needs and capturing opportunities for the future: the 2015 long range plan for the DOE-NP isotope program; 2015. p. 45-54.
  6. Langer A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner?. BMC Health Serv Res 2010; 10:1-16. https://doi.org/10.1186/1472-6963-10-1
  7. Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer 2014; 120:3433-3445. https://doi.org/10.1002/cncr.28860
  8. Srivastava SC, Mausner LF. Therapeutic radionuclides: production, physical characteristics and applications. In: Baum R, editor. Therapeutic Nuclear Medicine. Springer; 2014, p. 11-50.
  9. Funkhouser J. Reintroducing pharma: theranostic revolution. Curr Drugs Discov 2001; 2:17-19.
  10. NSAC isotopes subcommittee, Meeting isotopes needs and capturing opportunities for the future: the 2015 long range plan for the DOE-NP isotope program; 2015. p. 48-49.
  11. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconj Chem 2011; 22:1879-1903. https://doi.org/10.1021/bc200151q
  12. Denoyer D, Pouliot N. Radionuclide theranostics in cancer. J Mol Imaging Dynam 2013; 4:1-2.
  13. Muller C, Bunka M, Haller S, Koster U, Groehn V, Bernhardt P, Meulen N, Turler A, Schibli R. Promising prospects for 44Sc-/47Sc-based theranostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 2014; 55:1658-1664. https://doi.org/10.2967/jnumed.114.141614
  14. Smith NA, Bowers DL, Ehst DA. The production separation and use of 67Cu for radioimmunotherapy: A review. Appl Radiat Isotopes 2012; 70:2377-2383. https://doi.org/10.1016/j.apradiso.2012.07.009
  15. Muller C, Bunka M, Reber J, Fischer C, Zhernsekov K, Turler A, Schibli R. Promises of cyclotron-produced Sc-44 as a diagnostic match for trivalent $\beta$- emitter: in vitro and in vivo study of a Sc-44-DOTA foliate conjugate. J Nucl Med 2013; 54:2168-2174. https://doi.org/10.2967/jnumed.113.123810
  16. Ikotun OF, Lapi SE. The rise of metal radionuclides in medical imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med Chem 2011; 3:599-621. https://doi.org/10.4155/fmc.11.14
  17. Asabella AN, Cascini GL, Altini C, Paparella D, Notaristefano A, Rubini G. The copper radioisotope: A systematic review with special interest to 64Cu. Bio Med Res Intl 2014; 2014: 1-9.
  18. Cyclotron produced radionuclides: emerging positron emitters for medical applications: 64Cu and 124I. IAEA radioisotopes and radiopharmaceuticals report no. 1. 2016. p. 2-40.
  19. Pruszynski M, Loktionova NS, Filosofov DV, Rosh F. Post elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application. Appl Radiat Isotopes 2010; 68:1636-1641. https://doi.org/10.1016/j.apradiso.2010.04.003
  20. Bartos B, Majkowska A, Kasperek A, Krajewski A, Bilewicz A. New separation method of no-carrier-added 47Sc from titanium target. Radiochim Acta 2012; 100:457-461. https://doi.org/10.1524/ract.2012.1938
  21. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Copper chelation chemistry and its role in radiopharmaceutical. Curr Pharm Design 2007; 13:3-16. https://doi.org/10.2174/138161207779313768
  22. Szymanski P, Fraczek T, Markowicz M, Mikiciukolaski E. Development of copper based drugs, radiopharmaceuticals and medical material. Biometals 2012; 25:1089-1112. https://doi.org/10.1007/s10534-012-9578-y
  23. Ma D, Lu F, Overstreet T, Milenic DE, Brechbiel MW. Novel chelating agents for potential clinical applications of copper. Nucl Med Biol 2002; 29:91-105. https://doi.org/10.1016/S0969-8051(01)00287-6
  24. Sun X, Wuest M, Weisman GR, Wong EH, Reed DP, Boswell CA, Motekaitis R, Martell AE, Welch MJ, Anderson CJ. Radiolabeling and in vivo behaviour of copper-64-labeled cross-bridging cyclam ligands. J Med Chem 2002; 45:469-477. https://doi.org/10.1021/jm0103817
  25. Dietz ML, Horwitz EP, Bond AH. Extraction chromatography: progress and opportunities. In: Bond AH, Dietz ML, Rogers RD, editors. Metal ion separation and pre-concentration. ACS symposium series-716; 1999. p. 234-250.
  26. Cortina JL, Warshawsky A. Development in solid-liquid extraction by solid impregnated resins. In: Marinsky JA, Marcus Y, editors. Ion exchange and solvent extraction vol. 13. Marcel Dekker: New York; 1997. p. 195-293.
  27. Dietz ML, Horwitz EP. Application of extraction chromatography in the development of radionuclide generator systems for nuclear medicine. Ind Eng Chem Res 2000; 39: 3181-3188. https://doi.org/10.1021/ie9903745
  28. Pierce TB, Peck PF. The preparation of carrier-free $^{115}In$ by reverse phase partition technique. J Chromatogr 1961; 6:248-251. https://doi.org/10.1016/S0021-9673(61)80250-1
  29. Stronski I, Kemmer J, Kaubisch N. The separation of $^{228}Ra/^{228}Ac$ and $^{212}Pb/^{212}Bi$ with the help of extraction chromatography in the di(ethylhexyl)phosphate-hydrochloric acid system. Z Naturforch 1968; 23b:137-139.
  30. Malinin AB, Kurchatova LN, Tronova IN, Bayura NA, Gromova NP, Tikhomorova EA, Kurenkov NV. A yittrium-90 generator giving high radiochemical purity. Radiokhimiya 1984; 26:500-503.
  31. Ma D, Jurisson SS, Ehrhardt GJ, Yelon WB, Ketring AR. Development of Dy-166/ Ho-166 in vivo generator for radionuclide radiotherapy. J Nucl Med 1993; 34:231.
  32. Boll RA, Mirzadeh S, Kennel SJ. Optimization of radiolabeling of immunoproteins with $^{213}Bi$. Radiochim acta 1997; 79:145-149.
  33. Das SK, Nair AGC, Chatterjee RK, Guin R, Saha SK. The performance of a new $^{172}Hf-^{172}Lu$ generator. Appl Radiat Isot 1996; 47:643-644. https://doi.org/10.1016/0969-8043(96)00025-5
  34. Dietz ML, Horwitz EP. Improved chemistry for production of yttrium-90 for medical application. Appl Radiat Isot 1992; 43:1093-1101. https://doi.org/10.1016/0883-2889(92)90050-O
  35. Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 1998; 49:1541-1549. https://doi.org/10.1016/S0969-8043(98)00016-5
  36. Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ. Separation of cyclotron produced 44Sc from natural calcium target using a dipetyl pentylphosphonate functionalized extraction resin. Appl Radiat Isot 2014; 42:199-201.
  37. Bokhari TH, Mustaq A, Khan IU. Separation of no-carrieradded radioactive scandium from neutron irradiated titanium. JRadioanal Nucl Chem 2010; 283:389-393. https://doi.org/10.1007/s10967-009-0370-6
  38. Akaza I. Correlation between extraction chromatography and liquid-liquid extraction. In: Braun T, Ghersini G., editors. Extraction chromatography. Elsevier; 1975. p. 17-44.
  39. Horwitz EP, McAlister DR, Dietz ML. Extraction chromatography and solvent extraction: how similar they are?. Separ Sci Technol 2006; 41:2163-212. https://doi.org/10.1080/01496390600742849
  40. Horwitz EP. Extraction chromatography of actinides and selected fission products: principle and achievements of selectivity. International Workshop on the Application of Extraction Chromatography in Radionuclide Measurement, IRMM, Belgium 1996; HP199.
  41. Extraction Chromatography, Technical Documentation. TRISKEM International;2015. p. 4.
  42. Ghersini G. Stationary phases in extraction chromatography. In: Braun T, Ghersini G., editors. Extraction chromatography. Elsevier; 1975. p. 68-129.
  43. Markl P, Schmid ER. Techniques in column extraction chromatography. In: Braun T, Ghersini G., editors. Extraction chromatography. Elsevier; 1975. p. 45-66.
  44. Katykhin GS. Inert supports in column extraction chromatography. In: Braun T, Ghersini G., editors. Extraction chromatography. Elsevier; 1975. p. 134-167.
  45. Siekierski S. Theoretical aspects of extraction chromatography. In: Braun T, Ghersini G., editors. Extraction chromatography. Elsevier; 1975. p. 1-41.
  46. Sasaki Y, Sugo Y, Suzuki S, Tachimori S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr Ion Exc 2001; 19:91-103. https://doi.org/10.1081/SEI-100001376
  47. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 2012; 112:1751-1772. https://doi.org/10.1021/cr200002f
  48. Pourmand A, Dauphas N. Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta 2010; 81:741-753. https://doi.org/10.1016/j.talanta.2010.01.008
  49. Horwitz EP, McAlister DR, Bond AH, Barrans Jr RE. Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exc 2005; 23: 319-344. https://doi.org/10.1081/SEI-200049898
  50. Antonio MR, McAlister DR, Horwitz EP. An europium (III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction. Dalton Trans 2015, 44: 515-521. https://doi.org/10.1039/C4DT01775G
  51. Dutta S, Mohapatra PK, Manchanda VK. Separation of $^{90}Y$ from $^{90}Sr$ by a solvent extraction method using N,N,N',N'-tetraoctyl diglycolamide (TODGA) as the extractant. Appl Radiat Isot 2011; 69:158-162. https://doi.org/10.1016/j.apradiso.2010.09.016
  52. Dutta S, Mohapatra PK, Raut DR, Manchanda VK. Chromatographic separation of carrier free $^{90}Y$ from $^{90}Sr$ using a diglycolamide based resin for possible pharmaceutical applications. J Chromatogr A 2011; 1218:6483-6488. https://doi.org/10.1016/j.chroma.2011.07.038
  53. Dutta S, Raut DR, Manchanda VK. Role of diluent on the separation of $^{90}Y$ from $^{90}Sr$ by solvent extraction and supported liquid membrane usingT2EHDGA as the extractant Appl Radiat Isot 2012; 70:670-675. https://doi.org/10.1016/j.apradiso.2011.11.064
  54. Dutta S, Mohapatra PK. Studies on the separation of 90Y from 90Sr by solvent extraction and supported liquid membrane using TODGA: role of organic diluent J Radioanal Nucl Chem 2011; 288:389-394. https://doi.org/10.1007/s10967-010-0931-8
  55. Dirks C, Happel S. Application of extraction chromatography to the separation of Sc and Zr isotopes from target matrix. TRISKEM International Users Group Meeting. 2010.
  56. Alliot C., Kerdjoudj R, Michel N, Haddad F. Huclier-Markai S. Cyclotron production of high purity 44m, 44Sc with deuterons from 44CaCO3 targets. Nucl Med Biol 2016; 42:524-529.
  57. Meulen NP, Bunka M, Domnanich KA, Muller C, Haller S, Vermeulen C, Turler A, Schibli R. Cyclotron production of 44Sc: from bench to bedside. Nucl Med Biol 2015; 42:745-751. https://doi.org/10.1016/j.nucmedbio.2015.05.005
  58. Burger LL. Uranium and plutonium extraction by organophosphorus compounds. J Phys Chem 1958; 62:590-593 https://doi.org/10.1021/j150563a017
  59. Wright A, Hartmann PP. Review of physical and chemical properties of tributyl phosphate/diluent/nitric acid systems. Separ Sci Technol 2010; 45:1753-1762. https://doi.org/10.1080/01496395.2010.494087
  60. Peppard DF, Mason GW, Maier JL. Interrelationships in the solvent extraction behavior of scandium, thorium and zirconium in certain tributyl phosphate-mineral acid systems. J Inorg Nucl Chem 1956; 3:215-228. https://doi.org/10.1016/0022-1902(56)80022-5
  61. Pietrelli L, Mausner LF, Kolsky KL. Separation of carrier-free 47Sc from titanium targets. J Radioanal Nucl Chem 1992; 157:335-345. https://doi.org/10.1007/BF02047448
  62. Wang W, Cheng CY. Separation and purification of scandium by solvent extraction and related technologies : a review. J Chem Technol Biotechnol 2011; 86:1237-1246. https://doi.org/10.1002/jctb.2655
  63. Rao VPR, Kolarik Z. A review of third phase formation in extraction f actinides by neutral organophosphorus extractants. Solv Extr and Ion Exch 1994; 12:727-744. https://doi.org/10.1080/07366299408918234
  64. Extraction Chromatography, Technical Documentation. TRISKEM International; 2015. p. 8.
  65. Szkliniarz K, Sitarz M, Walczak R, Jastrzebski J, Bilewicz A, Choinski J, Jakubowski A, Majkowska A, Stolarz A, Trzcinska A, Zipper W. Production of medical Sc radioisotopes with alpha particle beam. Appl Radiat Isot 2016; 118:182-189. https://doi.org/10.1016/j.apradiso.2016.07.001
  66. Green BR, Hancock RD. Useful resins for the selective extraction of copper, nickel and cobalt. SAIMM 1982; 303-307.
  67. Hodgkin JH, Eibl R. Copper selective chelating resins. React Polym 1985; 3:83-89.
  68. Greig JA, Hancock RD. Copper selective chelating resins, II column extractions. React Polym 1990; 12:75-82. https://doi.org/10.1016/0923-1137(90)90063-A
  69. Dirks C, Scholten B, Happel S, Zulauf A, Bombard A, Jungclas H. Characterization of a Cu selective resin and its application to the production of $^{64}Cu$. J Radioanal Nucl Chem 2010; 286:671-674. https://doi.org/10.1007/s10967-010-0744-9
  70. Islam A, Ahmad H, Zaidi N, Kumar S. Copper selective self-sort polymeric resin with mixed-mode functionality for column preconcentration and atomic absorption spectrometric determination. RSC Adv 2016; in the press:1-32.