DOI QR코드

DOI QR Code

Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius

  • Nguyen, Trung Kien (Division of Life Sciences, Incheon National University) ;
  • Im, Kyung Hoan (Division of Life Sciences, Incheon National University) ;
  • Choi, Jaehyuk (Division of Life Sciences, Incheon National University) ;
  • Shin, Pyung Gyun (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • 투고 : 2016.10.26
  • 심사 : 2016.12.07
  • 발행 : 2016.12.30

초록

Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate ($10{\sim}100{\mu}g/mL$), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities.

키워드

참고문헌

  1. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4:89-96.
  2. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 2000;48:3597-604. https://doi.org/10.1021/jf000220w
  3. Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo 1999;13:295-309.
  4. Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 2009;22:1747-60. https://doi.org/10.1021/tx900242k
  5. Thompson PA, Wright DE, Counsell CE, Zajicek J. Statistical analysis, trial design and duration in Alzheimer's disease clinical trials: a review. Int Psychogeriatr 2012;24:689-97. https://doi.org/10.1017/S1041610211001116
  6. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013;8:2003-14.
  7. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013;11:315-35. https://doi.org/10.2174/1570159X11311030006
  8. Tan JW, Tham CL, Israf DA, Lee SH, Kim MK. Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition. Neurochem Res 2013;38:512-8. https://doi.org/10.1007/s11064-012-0943-6
  9. Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-${\kappa}B$ activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001;166:3873-81. https://doi.org/10.4049/jimmunol.166.6.3873
  10. Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 2004;142:331-8. https://doi.org/10.1038/sj.bjp.0705650
  11. Chang ST, Buswell JA. Mushroom nutriceuticals. World J Microbiol Biotechnol 1996;12:473-6. https://doi.org/10.1007/BF00419460
  12. Kalac P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric 2013;93:209-18. https://doi.org/10.1002/jsfa.5960
  13. Ying JZ, Mao XL, Ma QM, Zong YC, Wen HA. Icons of medicinal fungi from China. Beijing: Science Press; 1987.
  14. Pak WH, Lee HD. Illustrated book of Korean medicinal mushrooms. 2nd ed. Seoul: Kyo-Hak Publishing Co. Ltd.; 2003.
  15. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int J Med Mushrooms 1999;1:31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
  16. Lindequist U. The merit of medicinal mushrooms from a pharmaceutical point of view. Int J Med Mushrooms 2013;15:517-23. https://doi.org/10.1615/IntJMedMushr.v15.i6.10
  17. Patel Y, Naraian R, Singh VK. Medicinal properties of Pleurotus species (oyster mushroom): a review. World J Fungal Plant Biol 2012;3:1-12.
  18. Chang ST, Miles PG. Mushrooms cultivation, nutritional value, medicinal effect, and environmental impact. 2nd ed. Boca Raton (FL): CRC Press; 2004.
  19. Oliveira Silva S, Gomes da Costa SM, Clemente E. Chemical composition of Pleurotus pulmonarius (Fr.) Quel., substrates and residues after cultivation. Braz Arch Biol Technol 2002;45:531-5. https://doi.org/10.1590/S1516-89132002000600018
  20. Smiderle FR, Olsen LM, Carbonero ER, Baggio CH, Freitas CS, Marcon R, Santos AR, Gorin PA, Iacomini M. Anti-inflammatory and analgesic properties in a rodent model of a ($1{\rightarrow}3$),($1{\rightarrow}6$)-linked ${\beta}$-glucan isolated from Pleurotus pulmonarius. Eur J Pharmacol 2008;597:86-91. https://doi.org/10.1016/j.ejphar.2008.08.028
  21. Alam N, Yoon KN, Lee KR, Shin PG, Cheong JC, Yoo YB, Shim JM, Lee MW, Lee UY, Lee TS. Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology 2010;38:295-301. https://doi.org/10.4489/MYCO.2010.38.4.295
  22. Cuendet M, Hostettmann K, Potterat O, Dyatmiko W. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 1997;80:1144-52. https://doi.org/10.1002/hlca.19970800411
  23. Ruberto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 2000;69:167-74. https://doi.org/10.1016/S0308-8146(99)00247-2
  24. Halliwell B, Gutteridge JM, Aruoma OI. The deoxyribose method: a simple "test-tube" assay for the determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 1987;165:215-9. https://doi.org/10.1016/0003-2697(87)90222-3
  25. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem 2008;56:7265-70. https://doi.org/10.1021/jf8008553
  26. Im KH, Nguyen TK, Shin DB, Lee KR, Lee TS. Appraisal of antioxidant and anti-inflammatory activities of various extracts from the fruiting bodies of Pleurotus florida. Molecules 2014;19:3310-26. https://doi.org/10.3390/molecules19033310
  27. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  28. Orhan I, Aslan S, Kartal M, Sener B, Husnu Can Baser K. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem 2008;108:663-8. https://doi.org/10.1016/j.foodchem.2007.11.023
  29. Ma S, Liu H, Jiao H, Wang L, Chen L, Liang J, Zhao M, Zhang X. Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and $Ca^{2+}$ influx. Neurotoxicology 2012;33:59-69. https://doi.org/10.1016/j.neuro.2011.11.003
  30. Abas F, Lajis NH, Israf DA, Khozirah S, Kalsom YU. Antioxidant and nitric oxide inhibition activities of selected Malay traditional vegetables. Food Chem 2006;95:566-73. https://doi.org/10.1016/j.foodchem.2005.01.034
  31. Yayeh T, Oh WJ, Park SC, Kim TH, Cho JY, Park HJ, Lee IK, Kim SK, Hong SB, Yun BS, et al. Phellinus baumii ethyl acetate extract inhibits lipopolysaccharide-induced iNOS, COX-2, and proinflammatory cytokine expression in RAW264.7 cells. J Nat Med 2012;66:49-54. https://doi.org/10.1007/s11418-011-0552-8
  32. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962;111:544-7. https://doi.org/10.3181/00379727-111-27849
  33. Punitha SC, Rajasekaran M. Free radical scavenging activity of fruiting body extracts of an edible mushroom, Volvariella volvacea (Bull. ex Fr.) Singer: an in vitro study. Asian J Biomed Pharmaceut Sci 2014;4:6-11.
  34. Oyetayo VO. Free radical scavenging and antimicrobial properties of extracts of wild mushrooms. Braz J Microbiol 2009;40:380-6. https://doi.org/10.1590/S1517-83822009000200031
  35. Obodai M, Ferreira IC, Fernandes A, Barros L, Mensah DL, Dzomeku M, Urben AF, Prempeh J, Takli RK. Evaluation of the chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules 2014;19:19532-48. https://doi.org/10.3390/molecules191219532
  36. Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid Based Complement Altern Med 2012;2012:464238.
  37. Menaga D, Rajakumar S, Ayyasamy PM. Free radical scavenging activity of methanolic extract of Pleurotus florida mushroom. Int J Pharm Pharm Sci 2013;5(Suppl 4):601-6.
  38. Yoon KN, Alam N, Lee KR, Shin PG, Cheong JC, Yoo YB, Lee TS. Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules 2011;16:2334-47. https://doi.org/10.3390/molecules16032334
  39. Walter M, Marchesan E. Phenolic compounds and antioxidant activity of rice. Braz Arch Biol Technol 2011;54:371-7. https://doi.org/10.1590/S1516-89132011000200020
  40. Zhao M, Yang B, Wang J, Li B, Jiang Y. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chem 2006;98:539-44. https://doi.org/10.1016/j.foodchem.2005.06.028
  41. Orhan I, Ustun O. Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J Food Compost Anal 2011;24:386-90. https://doi.org/10.1016/j.jfca.2010.11.005
  42. Roseiro LB, Rauter AP, Serralheiro ML. Polyphenols as acetylcholinesterase inhibitors: structural specificity and impact on human disease. Nutr Aging 2012;1:99-111.
  43. Dundar A, Okumus V, Ozdemir S, Celik KS, Boga M, Ozcagli E, Ozhan G, Yildiz A. Antioxidant, antimicrobial, cytotoxic and anticholinesterase activities of seven mushroom species with their phenolic acid composition. J Hortic 2015;2:161.
  44. Orhan I, Kartal M, Tosun F, Sener B. Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential. Z Naturforsch C 2007;62:829-32.
  45. Lee JH, Song DK, Jung CH, Shin DH, Park J, Kwon TK, Jang BC, Mun KC, Kim SP, Suh SI, et al. (-)-Epigallocatechin gallate attenuates glutamate-induced cytotoxicity via intracellular $Ca^{2+}$ modulation in PC12 cells. Clin Exp Pharmacol Physiol 2004;31:530-6. https://doi.org/10.1111/j.1440-1681.2004.04044.x
  46. Ong CK, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res 2007;5:19-34. https://doi.org/10.3121/cmr.2007.698
  47. Jo WS, Choi YJ, Kim HJ, Lee JY, Nam BH, Lee JD, Lee SW, Seo SY, Jeong MH. The anti-inflammatory effects of water extract from Cordyceps militaris in murine macrophage. Mycobiology 2010;38:46-51. https://doi.org/10.4489/MYCO.2010.38.1.046
  48. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm 2014;2014:805841.
  49. Song YS, Kim SH, Sa JH, Jin C, Lim CJ, Park EH. Anti-angiogenic and inhibitory activity on inducible nitric oxide production of the mushroom Ganoderma lucidum. J Ethnopharmacol 2004;90:17-20. https://doi.org/10.1016/j.jep.2003.09.006