DOI QR코드

DOI QR Code

Vitamin E Potentiates the Anti-nociceptive Effects by Intraperitoneal Administration of Lidocaine in Rats

  • Kim, Hye-Jin (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Yang, Hae-Ji (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Sun-Hyong (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Dan-A (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Seong-Ju (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Park, Han-na (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ju, Jin-Sook (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ahn, Dong-Kuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University)
  • Received : 2016.11.28
  • Accepted : 2016.12.08
  • Published : 2016.12.31

Abstract

The present study was to evaluate effects of vitamin E on intravenous administration of lidocaine-induced antinociception. Experiments were carried out using male Sprague-Dawley rats. Orofacial formalin-induced nociceptive behavioral responses were used as the orofacial animal pain model. Subcutaneous injection of formalin produced significant nociceptive scratching behavior. Intraperitoneal injection of 5 and 10 mg/kg of lidocaine attenuated formalin-induced nociceptive behavior in the 2nd phase, compared to the vehicle-treated group. Intraperitoneal injection of 1 g/kg of vitamin E also attenuated the formalin-induced nociceptive behavior in the 2nd phase, compared to the vehicle-treated group. However, low dose of vitamin E (0.5 g/kg) did not affect the nociceptive behavioral responses produced by subcutaneous injection of formalin. The present study also investigated effects of intraperitoneal injection of both vitamin E and lidocaine on orofacial formalin-induced behavioral responses. Vehicle treatment affected neither formalin-induced behavioral responses nor lidocaine-induced antinociceptive effects. However, intraperitoneal injection of 0.5 g/kg of vitamin E enhanced the lidocaine-induced antinociceptive effects in the 2nd phase compared to the vehicle-treated group. Intraperitoneal injection of naloxone, an opioid receptor antagonist, did not affect antinociception produced by intraperitoneal injections of both vitamin E and lidocaine. These results suggest that treatment with vitamin E enhances the systemic treatment with lidocaine-induced antinociception and reduces side effects when systemically treated with lidocaine. Therefore, the combined treatment with vitamin E and lidocaine is a potential therapeutic for chronic orofacial pain.

Keywords

References

  1. Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58:280-286. https://doi.org/10.1590/S0034-70942008000300011
  2. Sheu SS, Lederer WJ. Lidocaine's negative inotropic and antiarrhythmic actions. Dependence on shortening of action potential duration and reduction of intracellular sodium activity. Circ Res. 1985;57:578-590. https://doi.org/10.1161/01.RES.57.4.578
  3. Catterall WA. Physiology. A one-domain voltage-gated sodium channel in bacteria. Science. 2001;294:2306-2308. doi:10.1126/science.1067417
  4. Abram SE, Yaksh TL. Systemic lidocaine blocks nerve injury-induced hyperalgesia and nociceptor-driven spinal sensitization in the rat. Anesthesiology. 1994;80:383-391. https://doi.org/10.1097/00000542-199402000-00018
  5. Araujo MC, Sinnott CJ, Strichartz GR. Multiple phases of relief from experimental mechanical allodynia by systemic lidocaine: responses to early and late infusions. Pain. 2003;103:21-29. https://doi.org/10.1016/S0304-3959(02)00350-0
  6. Finnerup NB, Biering-Sorensen F, Johannesen IL, Terkelsen AJ, Juhl GI, Kristensen AD, Sindrup SH, Bach FW, Jensen TS. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiology. 2005;102:1023-1030. https://doi.org/10.1097/00000542-200505000-00023
  7. Mao J, Chen LL. Systemic lidocaine for neuropathic pain relief. Pain. 2000;87:7-17. https://doi.org/10.1016/S0304-3959(00)00229-3
  8. Woolf CJ, Wiesenfeld-Hallin Z. The systemic administration of local anaesthetics produces a selective depression of C-afferent fibre evoked activity in the spinal cord. Pain. 1985;23:361-374. https://doi.org/10.1016/0304-3959(85)90006-5
  9. Chabal C, Russell LC, Burchiel KJ. The effect of intravenous lidocaine, tocainide, and mexiletine on spontaneously active fibers originating in rat sciatic neuromas. Pain. 1989;38:333-338. doi:10.1007/s10195-016-0411-1
  10. Devor M, Wall PD, Catalan N. Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain. 1992;48:261-268. https://doi.org/10.1016/0304-3959(92)90067-L
  11. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51:1000-1013. doi: 10.1016/j.freeradbiomed.2011.05.017.
  12. Dowd P, Zheng ZB. On the mechanism of the anticlotting action of vitamin E quinone. Proc Natl Acad Sci U S A. 1995;92:8171-8175. https://doi.org/10.1073/pnas.92.18.8171
  13. Schneider C. Chemistry and biology of vitamin E. Mol Nutr Food Res. 2005;49:7-30. doi:10.1002/mnfr.200400049
  14. Azzi A, Stocker A. Vitamin E: non-antioxidant roles. Prog Lipid Res. 2000;39:231-255. https://doi.org/10.1016/S0163-7827(00)00006-0
  15. Hong BH, Ko YK, Lee YJ, Han K, Kim Y, Lee W. Antinociceptive effects of vitamin E in formalin-induced nociceptive response in rats. Anesth Pain Med. 2011;6:59-62.
  16. Kim HK, Kim JH, Gao X, Zhou JL, Lee I, Chung K, Chung JM. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain. 2006;122:53-62. doi:10.1016/j.pain.2006.01.013
  17. Abbott FV, Franklin KB, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain. 1995;60:91-102. https://doi.org/10.1016/0304-3959(94)00095-V
  18. Choi HS, Ju JS, Lee HJ, Jung CY, Kim BC, Park JS, Ahn DK. Effects of TNF-alpha injected intracisternally on the nociceptive jaw-opening reflex and orofacial formalin test in freely moving rats. Prog Neuropsychopharmacol Biol Psychiatry. 2003a;27:613-618. doi:10.1016/S0278-5846(03)00049-6
  19. Choi HS, Ju JS, Lee HJ, Kim BC, Park JS, Ahn DK. Effects of intracisternal injection of interleukin-6 on nociceptive jaw opening reflex and orofacial formalin test in freely moving rats. Brain Res Bull. 2003b;59:365-370. https://doi.org/10.1016/S0361-9230(02)00931-0
  20. Raboisson P, Dallel R. The orofacial formalin test. Neurosci Biobehav Rev. 2004;28:219-226. doi:10.1016/j.neubiorev.2003.12.003
  21. Ahn DK, Lee KR, Lee HJ, Kim SK, Choi HS, Lim EJ, Park JS. Intracisternal administration of chemokines facilitated formalin-induced behavioral responses in the orofacial area of freely moving rats. Brain Res Bull. 2005;66:50-58. doi:10.1016/j.brainresbull.2005.03.015
  22. Yang GY, Woo YW, Park MK, Bae YC, Ahn DK, Bonfa E. Intracisternal administration of NR2 antagonists attenuates facial formalin-induced nociceptive behavior in rats. J Orofac Pain. 2010;24:203-211.
  23. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51:5-17. https://doi.org/10.1016/0304-3959(92)90003-T
  24. Raboisson P, Dallel R, Clavelou P, Sessle BJ, Woda A. Effects of subcutaneous formalin on the activity of trigeminal brain stem nociceptive neurones in the rat. J Neurophysiol. 1995;73:496-505. https://doi.org/10.1152/jn.1995.73.2.496
  25. Fernandes Fraceto L, Spisni A, Schreier S, de Paula E. Differential effects of uncharged aminoamide local anesthetics on phospholipid bilayers, as monitored by 1H-NMR measurements. Biophys Chem. 2005;115:11-18. doi:10.1016/j.bpc.2004.12.003
  26. Sheets MF, Hanck DA. Molecular action of lidocaine on the voltage sensors of sodium channels. J Gen Physiol. 2003;121:163-175. https://doi.org/10.1085/jgp.20028651
  27. Koppert W, Ostermeier N, Sittl R, Weidner C, Schmelz M. Low-dose lidocaine reduces secondary hyperalgesia by a central mode of action. Pain. 2000;85:217-224. doi:10.1002/jmrs.84
  28. Hollmann MW, Durieux ME. Prolonged actions of short-acting drugs: local anesthetics and chronic pain. Reg Anesth Pain Med. 2000;25:337-339. doi:10.1053/rapm.2000.7606
  29. Abelson KS, Hoglund AU. Intravenously administered lidocaine in therapeutic doses increases the intraspinal release of acetylcholine in rats. Neurosci Lett. 2002;317:93-96. https://doi.org/10.1016/S0304-3940(01)02440-5
  30. Hollmann MW, Ritter CH, Henle P, de Klaver M, Kamatchi GL, Durieux ME. Inhibition of m3 muscarinic acetylcholine receptors by local anaesthetics. Br J Pharmacol. 2001;133:207-216. doi:10.1038/sj.bjp.0704040
  31. Biella G, Sotgiu ML. Central effects of systemic lidocaine mediated by glycine spinal receptors: an iontophoretic study in the rat spinal cord. Brain Res. 1993;603:201-206. https://doi.org/10.1016/0006-8993(93)91238-N
  32. Cohen SP, Mao J. Is the analgesic effect of systemic lidocaine mediated through opioid receptors? Acta Anaesthesiol Scand. 2003;47:910-911. https://doi.org/10.1034/j.1399-6576.2003.00163.x
  33. Nagy I, Woolf CJ. Lignocaine selectively reduces C fibre-evoked neuronal activity in rat spinal cord in vitro by decreasing N-methyl-D-aspartate and neurokinin receptor-mediated post-synaptic depolarizations; implications for the development of novel centrally acting analgesics. Pain. 1996;64:59-70. https://doi.org/10.1016/0304-3959(95)00072-0
  34. Sahoo DK, Roy A, Chainy GB. Protective effects of vitamin E and curcumin on L-thyroxine-induced rat testicular oxidative stress. Chem Biol Interact. 2008;176:121-128. doi: 10.1016/j.cbi.2008.07.009.
  35. Rao MV, Chawla SL, Sharma SR. Protective role of vitamin E on nickel and/or chromium induced oxidative stress in the mouse ovary. Food Chem Toxicol. 2009;47:1368-1371. doi: 10.1016/j.fct.2009.03.018.
  36. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111:116-124. doi:10.1016/j.pain.2004.06.008
  37. Lee KY, Chung K, Chung JM. Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol. 2010;103:382-391. doi: 10.1152/jn.90906.2008.
  38. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett. 2006;391:108-111. doi:10.1016/j.neulet.2005.08.055
  39. Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain. 2007;133:9-17. doi:10.1016/j.pain.2007.01.035
  40. Picard J, Ward SC, Zumpe R, Meek T, Barlow J, Harrop-Griffiths W. Guidelines and the adoption of 'lipid rescue' therapy for local anaesthetic toxicity. Anaesthesia. 2009;64:122-125. doi:10.1111/j.1365-2044.2008.05816.x.