DOI QR코드

DOI QR Code

Inhibitory Effect of Myricetin on Matrix Metalloproteinase Expression and Activity in Periodontal Inflammation

  • Ko, Seon-Yle (Department of Oral biochemistry and Institute of Dental Science, Dankook University)
  • Received : 2016.08.29
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

Flavonoid myricetin, usually found in tea and medicinal plants, has antioxidant and anti-inflammatory effects. Our objectives in this study were to verify the effects of myricetin on periodontal ligament fibroblasts (PDLFs) under inflammatory conditions and to observe its effects on osteoclast generation and on cytokine expression in RAW264.7 cells. To determine the effects of myricetin on PDLFs, we examined the expression and activity of proteolytic enzymes, including MMP-1, MMP-2, and MMP-8, which all play an important role in chronic periodontitis. We observed the effects of myricetin on intracellular signal transduction to verify the molecular mechanism involved. By measuring the formation of TRAP-positive multinucleated cells and the expression and activity of MMP-8, we were able to assess the effects of myricetin on osteoclast generation. In addition, by measuring the secretion of IL-6 and NO, we could evaluate the effects of myricetin on inflammatory mediators. We found that Myricetin had no effect on the viability of the PDLFs in the presence of inflammation, but it did decrease both the expression of MMP-1 and MMP-8 and the enzyme activity of MMP-2 and MMP-8 in these fibroblasts. Myricetin also decreased the lipopolysaccharide-stimulated phosphorylation of JNK, p38 signaling, IKKB, AKT, and p65RelA in the PDLFs. In the RAW264.7 cells, myricetin inhibited both the expression and the activity of MMP-8. Furthermore, Myricetin not only suppressed the generation of LPS-stimulated osteoclasts, but it also slightly inhibited LPS-stimulated degradation of IkB and decreased the release of LPS-induced IL-6 and NO. These findings suggest that myricetin alleviates the tissue-destructive processes that occur during periodontal inflammation.

Keywords

References

  1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;21:1318-1322. doi: 10.1126/science.284.5418.1318.
  2. Casarin RC, Ribeiro Edel P, Mariano FS, Nociti FH Jr, Casati MZ, Goncalves RB. Levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, inflammatory cytokines and species-specific immunoglobulin G in generalized aggressive and chronic periodontitis. J Periodontal Res. 2010;45:635-642. doi: 10.1111/j.1600-0765.2010.01278.x.
  3. Zhang D, Chen L, Li S, Gu Z, Yan J. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immunity. 2008;14:99-107. doi: 10.1177/1753425907088244.
  4. Souza PP, Palmqvist P, Lundgren I, Lie A, Costa-Neto CM, Lundberg P, Lerner UH. Stimulation of IL-6 cytokines in fibroblasts by toll-like receptors 2. J Dent Res. 2010;89:802-807. doi: 10.1177/0022034510366898.
  5. Quinn JM, Gillespie MT. Modulation of osteoclast formation. Biochem Biophys Res Commun. 2005;739-745. doi: 10.1016/j.bbrc.2004.11.076.
  6. Islam S, Hassan F, Tumurkhuu G, Ito H, Koide N, Mori I, Yoshida T, Yokochi T. 5-Fluorouracil prevents lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells by inhibiting Akt-dependent nuclear factor-kappaB activation. Cancer Chemother Pharmacol. 2007;227-233. doi: 10.1007/s00280-006-0261-2.
  7. Sorsa T, Ingman T, Suomalainen K, Haapasalo M, Konttinene YT, Lindy O, Saari H, Uitto VJ. Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast-type interstitial collatenases. Infect Immun. 1992;60:4491-4495.
  8. Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol. 1993;64:474-484. doi: 10.1902/jop.1993.64.5s.474.
  9. Sorsa T, Tjaderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, Golub LM, Brown DL, Mantyla P. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med. 2006;38:306-321. doi: 10.1080/07853890600800103.
  10. Kusano K, Miyaura C, Inada M, Tamura T, Ito A, Nagase H, Kamoi K, Suda T. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 1998;139:1338-1345. doi:10.1210/endo.139.3.5818.
  11. Mizutani A, Sugiyama I, Kuno E, Matsunaga S, Tsukagoshi N. Expression of matrix metalloproteinases during ascorbate-induced differentiation of osteoblastic MC3T3-E1 cells. J Bone Miner Res. 2001;16:2043-2049. doi: 10.1359/jbmr.2001.16.11.2043.
  12. Ingman T, Tervahartiala T, Ding Y, Tschesche H, Haerian A, Kinane DF, Konttinen YT, Sorsa T. Matrix metalloproteinases and their inhibitors in gingival crevicular fluid and saliva of periodontitis patients. J Clin Periodontol. 1996;23:1127-1132. doi: 10.1111/j.1600-051X.1996.tb01814.x.
  13. Moynagh PN. The NF-${\kappa}B$ pathway. J Cell Sci. 2005;118:4589-4592. doi: 10.1242/jcs.02579.
  14. Lewander A. $NF{\kappa}B$ p65 phosphorylated at serine-536 is an independent prognostic factor in Swedish colorectal cancer patients. Int J Colorectal Dis. 2012;27:447-452. doi: 10.1007/s00384-011-1356-8.
  15. El-Awady AR, Messer RL, Gamal AY, Sharawy MM, Wenger KH, Lapp CA. Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis. J Periodontol. 2010;81:1324-1335. doi: 10.1902/jop.2010.100054.
  16. Suda T, akamura I, Jimi E, Takahashi N. Regulation of osteoclast function. J Bone Miner Res. 1997;12:869-879. doi: 10.1359/jbmr.1997.12.6.869.
  17. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  18. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem. 1998;273:20551-20555. https://doi.org/10.1074/jbc.273.32.20551
  19. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 2002;30:71-77.
  20. Han KY, Yang D, Chang EJ, Lee Y, Huang H, Sung SH, Lee ZH, Kim YC, Kim HH. Inhibition of osteoclast differentiation and bone resorption by sauchinone. Biochem Pharmacol. 2007;74:911-923. doi: 10.1016/j.bcp.2007.06.044.
  21. Fortis T, Pepper MS, Akatas E, Breit S, Rasku S, Adlercreutz H, Wahala K, Montesano R, Schweigerer L. Flavonoids, dietary derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 1997;57:2916-2921.
  22. Kimura M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8:168-175. https://doi.org/10.2188/jea.8.168
  23. Teissedre PL, Frankel, EN, Waterhouse AL, Peleg H, German JB. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J Sci Food Agric. 1996;70:55-61. doi: 10.1002/(SICI)1097-0010(199601)70:1<55:AID-JSFA471>3.0.CO;2-X.
  24. Yanez J, Vicente V, Alcaraz M, Castillo J, Benevente-Garcia O, Canteras M, Teruel JA. Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocyte cell lines: relationship between structure and activity. Nutr Cancer. 2004;49:191-199. doi: 10.1207/s15327914nc4902_11.
  25. Wang J, Mazza G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW264.7 macrophages. J Agric Food Chem. 2002;50:850-857. doi: 10.1021/jf010976a.
  26. Blonska M, Czuba ZP, Krol W. Effect of flavone derivatives on interleukin-1beta mRNA expression and IL-1beta protein synthesis in stimulated RAW264.7 macrophages. Scand J Immunol. 2003;57:162-166. doi: 10.1046/j.1365-3083.2003.01213.x.
  27. Ejeil AL, Igondjo-Tchen S, Ghomrasseni S, Pellat B, Godeau G, Gogly B. Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva. J Periodontol. 2003;2:188-195. doi: 10.1902/jop.2003.74.2.188.
  28. Yanti, Hwang JK. Suppressive effect of ethanolic Kaempferia pandurata Roxb. Extract on matrix metalloproteinase-2 expression in Porphyromonas gingivalis-treated human gingival fibroblasts in vitro. J Oral Sci. 2010;52:583-591. doi: 10.2334/josnusd.52.583.
  29. Pietruska M, Pietruski J, Skurska A, Bernaczyk A, Zak J, Zelazowska B, Dolinska E, Paniczko-Drezek A, Wysocka J. Assessment of aprotinin influence on periodontal clinical status and matrix metalloproteinases 1, 2 and their tissue inhibitors saliva concentrations in patients with chronic periodontitis. Adv Med Sci. 2009;54:239-246. doi:10.2478/v10039-009-0027-2.
  30. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827-839. doi: 10.1161/01.RES.0000070112. 80711.3D.
  31. Tervahartiala T, Pirila E, Ceponis A, Maisi P, Salo T, Tuter G, Kallio P, Tornwall J, Srinivas R, Konttinen YT, Sorsa T. The in vivo expression of the collagenolytic matrix metalloproteinases (MMP-2, -8, -13, and -14) and matrilysin (MMP-7) in adult and localized juvenile periodontitis. J Dent Res. 2000;79:1969-1977. https://doi.org/10.1177/00220345000790120801
  32. Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, Sasano Y, Mitani H. Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res. 2003;82:646-651. https://doi.org/10.1177/154405910308200815
  33. Zhou J, Windsor LJ. Porphyromonas gingivalis affects host collagen degradation by affecting expression, activation, and inhibition of matrix metalloproteinases. J Periodontal Res. 2006;41:47-54. doi: 10.1111/j.1600-0765.2005.00835.x.
  34. Guan SM, Shu L, Fu SM, Liu B, Xu XL, Wu JZ. Prevotella intermedia upregulates MMP-1 and MMP-8 expression in human periodontal ligament cells. FEMS Microbiol Lett. 2009; 229: 214-222. doi: 10.1111/j.1574-6968.2009.01748.x.
  35. Giannobile WV. Host-response therapeutics for periodontal diseases. J Periodontol. 2008;78:1592-1600. doi: 10.1902/jop.2008.080174.
  36. Ko S. Myricetin suppresses LPS-induced MMP expression in human gingival fibroblasts and inhibits osteoclastogenesis by downregulating NFATc1 in RANKL-induced RAW264.7 cells. Arch Oral Biol. 2012;57:1623-1632. doi: 10.1016/j.archoralbio.2012.06.012.
  37. Ruiz PA, Kim SC, Sartor RB, Haller D. 15-Deoxy-$D^{12,14}$-prostaglandin $J_2$-mediated RelA phosphorylation and interleukin-6 gene expression in intestinal epithelial cells through modulation of protein phosphatase 2A activity. J Biol Chem. 2004;279:36103-36111. doi: 10.1074/jbc.M405032200.
  38. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  39. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889-901. doi: 10.1016/S1534-5807(02)00369-6.
  40. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649-683. doi: 10.1146/annurev.immunol.14.1.649.
  41. Jonsson D, Nebel D, Bratthall G, Nilsson BO. The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. J Periodontal Res. 2011;46:153-157. doi: 10.1111/j.1600-0765.2010.01331.x.
  42. Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol. 2002;169:3353-3362. https://doi.org/10.4049/jimmunol.169.6.3353
  43. Cuzzocrea S, Mazzon E, Dugo L, Lerner UH. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 2003;144:1098-1107. doi: 10.1210/en.2002-220597.
  44. Choi IS, Choi EY, Jin JY, Park HR, Choi JI, Kim SJ. Kaempferol inhibits P. intermedia lipopolysaccharide-induced production of nitric oxide through translational regulation in murine macrophages: critical role of heme oxygenase-1-mediated ROS reduction. J Periodontol. 2013;84:545-555. doi: 10.1902/jop.2012.120180.