DOI QR코드

DOI QR Code

SPECTRAL THEOREMS ASSOCIATED TO THE DUNKL OPERATORS

  • 투고 : 2016.06.30
  • 심사 : 2016.12.16
  • 발행 : 2016.12.30

초록

In this paper, we characterize the support for the Dunkl transform on the generalized Lebesgue spaces via the Dunkl resolvent function. The behavior of the sequence of $L^p_k$-norms of iterated Dunkl potentials is studied depending on the support of their Dunkl transform. We systematically develop real Paley-Wiener theory for the Dunkl transform on ${\mathbb{R}}^d$ for distributions, in an elementary treatment based on the inversion theorem. Next, we improve the Roe's theorem associated to the Dunkl operators.

키워드

참고문헌

  1. N.B. Andersen and M.F.E. de Jeu, Real Paley-Wiener theorems and local spectral radius formulas, Trans. Amer. Math. Soc. 362 (2010), 3616-3640.
  2. N.B. Andersen, Roe's theorem revisited, Integral Transf. and Special Functions V. 26 Issue 3, (2015), 165-172. https://doi.org/10.1080/10652469.2014.976219
  3. P.K. Banerji, S.K. Al-Omari and L. Debnath, Tempered distributional sine (cosine) transform, Integral Transforms Spec. Funct. 17 (11) (2006), 759-768. https://doi.org/10.1080/10652460600856534
  4. H.H. Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc. 108 (1) (1990), 73-76. https://doi.org/10.1090/S0002-9939-1990-1024259-9
  5. G. Birkoff and S. MacLane, A Survey of Modern Algebra, MacMillan, New York, 1965.
  6. C. Chettaoui, Y. Othmani and K. Trimeche, On the range of the Dunkl transform on ${\mathbb{R}}^d$, Anal. and Appl. 2 (3) (2004), 177-192. https://doi.org/10.1142/S0219530504000370
  7. C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Am. Math. Soc. 311 (1989), 167-183. https://doi.org/10.1090/S0002-9947-1989-0951883-8
  8. C.F. Dunkl, Integral kernels with re ection group invariance, Can. J. Math. 43 (1991), 1213-1227. https://doi.org/10.4153/CJM-1991-069-8
  9. C.F. Dunkl, Hankel transforms associated to finite re ection groups, Contemp. Math. 138 (1992), 123-138. https://doi.org/10.1090/conm/138/1199124
  10. L. Gallardo and L. Godefroy, Liouville's property and Poisson's equation for the generalized Dunkl Laplacian, C. R. Math. Acad. Sci. Paris, 337 (10) (2003), 1-6. https://doi.org/10.1016/S1631-073X(03)00261-9
  11. M.F.E. de Jeu, The Dunkl transform, Invent.Math. 113 (1993), 147-162. https://doi.org/10.1007/BF01244305
  12. J.-P. Gabardo, Tempered distributions with spectral gaps, Math. Proc. Camb. Phil. Soc. 106 (1989), 143-162. https://doi.org/10.1017/S0305004100068043
  13. R. Howard and M. Reese, Characterization of eigenfunctions by boundedness conditions, Canad. Math. Bull. 35 (1992), 204-213. https://doi.org/10.4153/CMB-1992-029-x
  14. H. Mejjaoli and K. Trimeche, Spectrum of functions for the Dunkl transform on ${\mathbb{R}}^d$, Fract. Calc. Appl. Anal. 10 (1) (2007), 19-38.
  15. H. Mejjaoli and R. Daher, Roe's theorem associated with the Dunkl operators, Int. J. Mod. Math 5 (2010), 299-314.
  16. H. Mejjaoli and K. Trimeche, Characterization of the support for the Hypergeometric Fourier transform of the W-invariant functions and distributions on ${\mathbb{R}}^d$ and Roe's theorem, Journal of inequalities and Applications, (2014):99 doi:10.1186/1029-242X-2014-99.
  17. H. Mejjaoli, Spectral theorems associated with the Dunkl type operator on the real line, Int. J. Open Problems Complex Analysis, 7 (2) June (2015), 17-42. https://doi.org/10.12816/0016281
  18. H. Mejjaoli, Paley-Wiener theorems of generalized Fourier transform associated with a Cherednik type operator on the real line, Complex Anal. Oper. Theory, 10 (6) (2016), 1145-1170. https://doi.org/10.1007/s11785-015-0456-9
  19. J. Roe, A characterization of the sine function, Math. Proc. Comb. Phil. Soc. 87 (1980), 69-73. https://doi.org/10.1017/S030500410005653X
  20. M. Rosler, Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), 519-542. https://doi.org/10.1007/s002200050307
  21. R.S. Strichartz, Characterization of eigenfunctions of the Laplacian by boundedness conditions, Trans. Amer. Math. Soc. 338 (1993), 971-979. https://doi.org/10.1090/S0002-9947-1993-1108614-1
  22. S. Thangavelu and Y. Xu, Convolution operator and maximal functions for Dunkl transform, J. d'Analyse Mathematique 97 (2005), 25-56. https://doi.org/10.1007/BF02807401
  23. V.K. Tuan, Paley-Wiener theorems for a class of integral transforms, J. Math. Anal. Appl. 266 (2002), 200-226. https://doi.org/10.1006/jmaa.2001.7740
  24. K. Trimeche, Paley-Wiener theorems for Dunkl transform and Dunkl translation operators, Integ. Transf. and Special Funct. 13 (2002), 17-38. https://doi.org/10.1080/10652460212888