DOI QR코드

DOI QR Code

Cellulase from the fruiting bodies and mycelia of edible mushrooms: A review

  • Wu, Yuanzheng (Department of Biochemical and Polymer Engineering, Chosun University) ;
  • Shin, Hyun-Jae (Department of Biochemical and Polymer Engineering, Chosun University)
  • Received : 2016.11.12
  • Accepted : 2016.12.12
  • Published : 2016.12.31

Abstract

Cellulose is the most abundant organic polymer constituent of the cell wall of green plants and of various forms of algae. The complexity of lignocellulosic biomass is a major challenge in industrial research. Most mushroom species that naturally grow on soil or wood possess cellulases and the corresponding enzymatic system and, potential candidates for the direct bioconversion of softwood polysaccharides into fermentable sugars. However, there have been fewer studies on mushroom cellulases than on fungi such as Trichoderma spp., exploit the full potential of mushroom cellulases. This review will focus on the current status ofmushroom cellulase research and applications and will provide insight into promising future prospects.

Keywords

References

  1. Agosin E, Jarpa S, Rojas E, Espejo E. 1989. Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb Technol. 11:511-517. https://doi.org/10.1016/0141-0229(89)90033-1
  2. Balaraju K, Park K, Jahagirdar S, Kaviyarasan V. 2010. Production of cellulase and laccase enzymes by Oudemansiella radicata using agro wastes under solid-state and submerged conditions. Res Biotechnol.1:21-28.
  3. Baldrian P, Valaskova V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 32:501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  4. Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol Rev. 13:25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  5. Bhat MK. 2000. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 18:355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  6. Buswell JA, Cai YJ, Chang ST, Peberdy JF, Fu SY, Yu HS. 1996. Lignocellulolytic enzyme profiles of edible mushroom fungi. World J Microbiol Biotechnol. 12:537-542. https://doi.org/10.1007/BF00419469
  7. Cai YJ, Chapman SJ, Buswell JA, Chang ST. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and ${\beta}$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl Environ Microbiol. 65:553-559.
  8. Chang ST, Miles PG. 1991. Recent trends in world production of cultivated edible mushrooms. Mushroom J. 504:15-18.
  9. Cohen R, Persky L, Hadar Y. 2002. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol. 58:582-594. https://doi.org/10.1007/s00253-002-0930-y
  10. Daba AS, Youssef GA, Kabeil SS, Hafez EE. 2011. Production of recombinant cellulase enzyme from Pleurotus ostreatus (Jacq.) P. Kumm.(type NRRL-0366). Afr J Microbiol Res. 5:1197-1202. https://doi.org/10.5897/AJMR11.014
  11. Dashtban M, Maki M, Leung KT, Mao C, Qin W. 2010. Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol. 30:302-309. https://doi.org/10.3109/07388551.2010.490938
  12. Ding S, Ge W, Buswell JA. 2001. Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Eur J Biochem. 268:5687-5695. https://doi.org/10.1046/j.0014-2956.2001.02503.x
  13. Ding S, Ge W, Buswell JA. 2006. Cloning of multiple cellulase cDNAs from Volvariella volvacea and their differential expression during substrate colonization and fruiting. FEMS Microbiol Lett. 263:207-213. https://doi.org/10.1111/j.1574-6968.2006.00433.x
  14. Ding S, Ge W, Buswell JA. 2007. Molecular cloning and transcriptional expression analysis of an intracellular ${\beta}$-glucosidase, a family 3 glycosyl hydrolase, from the edible straw mushroom, Volvariella volvacea. FEMS Microbiol Lett. 267:221-229. https://doi.org/10.1111/j.1574-6968.2006.00550.x
  15. Elisashvili V, Chichua D, Kachlishvili E, Tsiklauri N, Khardziani T. 2003. Lignocellulolytic enzyme activity during growth and fruiting of the edible and medicinal mushroom Pleurotus ostreatus (Jacq.: Fr.) Kumm.(Agaricomycetideae). Int J Med Mushrooms. 5:193-198.
  16. Elvan H, Ertunga NS, Yildirim M, Colak A. 2010. Partial purification and characterisation of endoglucanase from an edible mushroom, Lepista flaccida. Food Chem. 123:291-295. https://doi.org/10.1016/j.foodchem.2010.04.034
  17. Hatakka A, Hammel KE. 2011. Fungal biodegradation of lignocelluloses. In Industrial applications (pp. 319-340). Springer Berlin Heidelberg.
  18. Hatakka A, Viikari L. 2014. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol. 88:103-165. https://doi.org/10.1016/B978-0-12-800260-5.00004-8
  19. Jo WS, Park HN, Cho DH, Yoo YB, Park SC. 2011. Detection of extracellular enzyme activities in Ganoderma neo-japonicum. Mycobiology. 39:118-120. https://doi.org/10.4489/MYCO.2011.39.2.118
  20. Kim JY, Lim CS, Kim JY, Han YH. 2004. The extracellular enzyme activities in culture broth of Sparassis crispa. Korean J Microbiol. 40:230-231.
  21. Kim J, Yun S, Ounaies Z. 2006. Discovery of cellulose as a smart material. Macromolecules. 39:4202-4206. https://doi.org/10.1021/ma060261e
  22. Klemm D, Heublein B, Fink HP, Bohn A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 44:3358-3393. https://doi.org/10.1002/anie.200460587
  23. Ko HG, Park SH, Kim SH, Park HG, Park WM. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol (Praha). 50:103-106. https://doi.org/10.1007/BF02931456
  24. Lechner BE, Papinutti VL. 2006. Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem. 41:594-598. https://doi.org/10.1016/j.procbio.2005.08.004
  25. Lee CC, Wong DW, Robertson GH. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Microbiol Lett. 205:355-360. https://doi.org/10.1111/j.1574-6968.2001.tb10972.x
  26. Lee JW, Koo BW, Choi JW, Choi DH, Choi IG. 2008. Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol. 99:2736-2741. https://doi.org/10.1016/j.biortech.2007.07.003
  27. Li F, Zhu X, Li N, Zhang P, Zhang S, Zhao X, Li P, Zhu Q, Lin H. 2014. Screening of lignocellulose-degrading superior mushroom strains and determination of their CMCase and laccase activity. Sci World J. Article ID 763108, doi:10.1155/2014/763108.
  28. Li X, Pang Y, Zhang R. 2001. Compositional changes of cottonseed hull substrate during P. ostreatus growth and the effects on the feeding value of the spent substrate. Bioresour Technol. 80:157-161. https://doi.org/10.1016/S0960-8524(00)00170-X
  29. Li X, Yang H, Roy B, Wang D, Yue WF, Jiang LJ, Park EY, Miao YG. 2009. The most stirring technology in future: Cellulase enzyme and biomass utilization. Afri J Biotechnol. 8:2418-2422.
  30. Li Y. 2012. Present development situation and tendency of edible mushroom industry in China. In 18th congress of the international society for mushroom science. Beijing, China (pp. 3-9).
  31. Lim SH, Lee YH, Kang HW. 2013. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology. 41:214-220. https://doi.org/10.5941/MYCO.2013.41.4.214
  32. Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 69:627-642. https://doi.org/10.1007/s00253-005-0229-x
  33. Manavalan T, Manavalan A, Thangavelu KP, Heese K. 2012. Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. J Proteomics. 77:298-309. https://doi.org/10.1016/j.jprot.2012.09.004
  34. Martinez D, Challacombe J, Morgenstern I, et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A. 106:1954-1959. https://doi.org/10.1073/pnas.0809575106
  35. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 22:695-700. https://doi.org/10.1038/nbt967
  36. Montoya S, Orrego CE, Levin L. 2012. Growth, fruiting and lignocellulolytic enzyme production by the edible mushroom Grifola frondosa (maitake). World J Microbiol Biotechnol. 28:1533-1541. https://doi.org/10.1007/s11274-011-0957-2
  37. Ohga S, Royse DJ. 2001. Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Lett. 201:111-115. https://doi.org/10.1111/j.1574-6968.2001.tb10741.x
  38. Ohga S, Smith M, Thurston CF, Wood DA. 1999. Transcriptional regulation of laccase and cellulase genes in the mycelium of Agaricus bisporus during fruit body development on a solid substrate. Mycol Res. 103:1557-1560. https://doi.org/10.1017/S0953756299008692
  39. Pandit NP, Maheshwari SK. 2012. Optimization of cellulase enzyme production from sugarcane pressmud using oyster mushroom-Pleurotus sajor-caju by solid state fermentation. J Bioremed Biodegrad. 3:140. doi:10.4172/2155-6199.1000140.
  40. Phan CW, Sabaratnam V. 2012. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol. 96:863-873. https://doi.org/10.1007/s00253-012-4446-9
  41. Praveen K, Usha KY, Shanthi B, Ramanjaneyulu G, Naveen M, Reddy BR. 2012. Production of cellulolytic enzymes by a mushroom-Stereum ostrea. Int J Res Biochem Biophys. 2:2249-8524.
  42. Raguz S, Yague E, Wood DA, Thurston CF. 1992. Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus. Gene. 119:183-190. https://doi.org/10.1016/0378-1119(92)90270-Y
  43. Romruen U, Bangyeekhun E. 2016. Cloning and expression of the cellulase gene from the king oyster mushroom, Pleurotus eryngii. Silpakorn Uni Sci Technol J. 10:22-30.
  44. Sadhu S, Maiti TK. 2013. Cellulase production by bacteria: a review. Br Microbiol Res J. 3:235. https://doi.org/10.9734/BMRJ/2013/2367
  45. Sanchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 27:185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001
  46. Sato S, Feltus FA, Iyer P, Tien M. 2009. The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak. Curr Genet. 55:273-286. https://doi.org/10.1007/s00294-009-0243-0
  47. Schwarze FW, Engels J, Mattheck C. 2013. Fungal strategies of wood decay in trees. Springer Science & Business Media.
  48. Singh A, Abduilah N, Vikineswary S. 2003. Optimization of extraction of bulk enzymes from spent mushroom compost. J Chem Technol Biotechnol. 78:743-752. https://doi.org/10.1002/jctb.852
  49. Skyba O, Cullen D, Douglas CJ, Mansfield SD. 2016. Gene expression patterns of wood decay fungi Postia placenta and Phanerochaete chrysosporium are influenced by wood substrate composition during degradation. Appl Environ Microbiol. 82:4387-4400. https://doi.org/10.1128/AEM.00134-16
  50. Stamets P. 2000. Growing gourmet and medicinal mushrooms: The role of mushrooms in nature. Vol. 3. Berkeley: Ten Speed Press.
  51. Stamets P. 2005. Mycelium running: how mushrooms can help save the world. Random House, Inc..
  52. Tan YH, Wahab MN. 1997. Extracellular enzyme production during anamorphic growth in the edible mushroom, Pleurotus sajor-caju. World J Microbiol Biotechnol. 13:613-617. https://doi.org/10.1023/A:1018502401095
  53. Tokuda G, Watanabe H. 2007. Hidden cellulases in termites: revision of an old hypothesis. Biol Lett. 3:336-339. https://doi.org/10.1098/rsbl.2007.0073
  54. Valaskova V, Baldrian P. 2006. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus--production of extracellular enzymes and characterization of the major cellulases. Microbiology. 152:3613-3622. https://doi.org/10.1099/mic.0.29149-0
  55. Vane CH, Drage TC, Snape CE. 2006. Bark decay by the white-rot fungus Lentinula edodes: Polysaccharide loss, lignin resistance and the unmasking of suberin. Int Biodeterior Biodegradation. 57:14-23. https://doi.org/10.1016/j.ibiod.2005.10.004
  56. Wood TM. 1989. Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi. Enzyme Systems for Lignocellulose Degradation, 17-35.
  57. Yan S, Wu G. 2014. Signal peptide of cellulase. Appl Microbiol Biotechnol. 98:5329-5362. https://doi.org/10.1007/s00253-014-5742-3
  58. Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. 2016. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci USA. 113:10968-10973. https://doi.org/10.1073/pnas.1608454113