DOI QR코드

DOI QR Code

Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics

전기방사법을 이용한 PVdF/Fe3O4-GO(MGO) 복합 분리막 제조 및 비소 제거 특성평가

  • Received : 2016.12.20
  • Accepted : 2016.12.29
  • Published : 2016.12.31

Abstract

In this study, the PVdF/MGO composite nanofiber membranes (PMGs) introducing Iron oxide-Graphene oxide ($Fe_3O_4/GO$, Metallic graphene oxide; MGO) was prepared via electrospinng method and its arsenic removal characteristics were investigated. The thermal treatment was carried out to improve the mechanical strength of nanofiber membranes and then the results showed that of outstanding improvement effect. However, in case of PMGs, the decreasing tendency of mechanical strength was indicated as increasing MGO contents. From the results of pore-size analysis, it was confirmed that the porous structured membranes with 0.3 to $0.45{\mu}m$ were prepared. For the water treatment application, the water flux measurement was carried out. In particular, PMG2.0 sample showed about 70% improved water flux results ($153kg/m^2h$) compared to that of pure PVdF nanofiber membrane ($91kg/m^2h$) under the 0.3 bar condition. In addition, the PMGs have indicated the high removal rates of both As(III) and As(V) (up to 81% and 68%, respectively). Based on the adsorption isotherm analysis, the adsorption of As(III) and As(V) ions were both more suitable for the Freundlich. From all of results, it was concluded that PVdF/MGO composite nanofiber membranes could be utilized as a water treatment membrane and for the Arsenic removal applications.

본 연구에서는, 전기방사법을 이용하여 산화철-산화그래핀($Fe_3O_4/GO$, metallic graphene oxide; MGO)이 도입된 PVdF/MGO 복합나노섬유(PMG)를 제조하였으며, 이를 활용하여 비소제거에 대한 특성 평가를 진행하였다. MGO의 경우 In-situ-wet chemical 방법으로 제조하였으며, FT-IR, XRD분석을 진행하여, 형태와 구조를 확인하였다. 나노섬유 분리막의 기계적 강도 개선을 위하여 열처리과정을 진행하였으며, 제조된 분리막의 우수한 기계적 강도 개선 효과를 확인할 수 있었다. 그러나, PMG 막의 경우, 도입된 MGO의 함량이 증가할수록 기계적 강도가 감소되는 경향성을 보여주었으며, 기공크기 분석결과로부터, $0.3{\sim}0.45{\mu}m$의 기공크기를 가진 다공성 분리막이 제조되었음을 확인할 수 있었다. 수처리용 분리막으로의 활용 가능성 조사를 위해, 수투과도 분석을 실시하였다. 특히, PMG2.0 샘플의 경우 0.3 bar 조건에서, PVdF 나노섬유막($91kg/m^2h$)에 비해 약 70% 향상된 결과값($153kg/m^2h$)을 나타내었다. 또한, 비소 흡착실험 결과로부터, PMG 막의 경우, 비소3가와 5가에 최대 81%, 68%의 높은 제거율을 보여주었으며, 흡착등온선 분석으로부터, 제조된 PMG 막의 경우 비소3가, 5가 모두 Freundlich 흡착거동을 따른다는 것을 확인하였다. 위 모든 결과로부터, PVdF/MGO 복합 나노섬유 분리막은 비소제거 및 수처리용 분리막으로 충분히 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. M. J. Gonzalez-Munoz, M. A. Rodriguez, S. Luque, and J. R. Alvarez, "Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration", Desalination, 200, 742 (2006). https://doi.org/10.1016/j.desal.2006.03.498
  2. Y. J. Kim, S. J. Park, and M. Kim, "Capture of metal ions by corss-linked sulfonic acid type ion exchange membrane", Membr. J., 19, 333 (2009).
  3. X. Luo, C. Wang, S. Luo, R. Dong, X. Tu, and G. Zeng, "Adsorption of As(III) and As(V) from water using magnetite $Fe_3O_4$-reduced graphite oxide- $MnO_2$ nanocomposites", Chem. Eng. J., 187, 45 (2012). https://doi.org/10.1016/j.cej.2012.01.073
  4. A. Sperlich, A. Werner, A. Genz, G. Amy, E. Worch, and M. Jekel, "Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches", Water Res., 39, 1190 (2005). https://doi.org/10.1016/j.watres.2004.12.032
  5. Q. L. Zhang, Y. C. Lin, X. Chen, and N. Y. Gao, "A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water", J. Hazard. Mater., 148, 671 (2007). https://doi.org/10.1016/j.jhazmat.2007.03.026
  6. K. J. Reddy, K. J. McDonald, and H. King, "A novel arsenic removal process for water using cupric oxide nanoparticles", J. Colloid. Interface Sci., 397, 96 (2013). https://doi.org/10.1016/j.jcis.2013.01.041
  7. J. S. Kim and M. M. Benjamin, "Modeling a novel ion exchange process for arsenic and nitrate removal", Water Res., 38, 2053 (2004). https://doi.org/10.1016/j.watres.2004.01.012
  8. R. Y. Ning, "Arsenic removal by reverse osmosis", Desalination, 143(3), 237 (2002). https://doi.org/10.1016/S0011-9164(02)00262-X
  9. G. Borbely and E. Nagy, "Removal of zinc and nickel ions by complexation-membrane filtration process from industrial wastewater", Desalination, 240, 218 (2009). https://doi.org/10.1016/j.desal.2007.11.073
  10. A. Heidari, H. Younesi, and Z. Mehraban, "Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica", Chem. Eng. J., 153, 70 (2009). https://doi.org/10.1016/j.cej.2009.06.016
  11. E. O. Omoregie, R. M. Couture, P. V. Cappellen, C. L. Corkhill, J. M. Charnock, D. A. Polya, D. Vaughan, K. Vanbroekhoven, and J. R. Lloyd, "Arsenic bioremediation by biogenic iron oxides and sulfides", Appl. Environ. Microbiol., 79, 4325 (2013). https://doi.org/10.1128/AEM.00683-13
  12. C. H. Lee, C. L. Chiang, and S. J. Liu, "Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions", Sep. Purif. Technol., 118, 737 (2013). https://doi.org/10.1016/j.seppur.2013.08.020
  13. M. Hua, S. Zhang, B. Pan, W. Zhangm, L. Lv, and Q. Zahng, "Heavy metal removal from water/ wastewater by nanosized metal oxides: A review", J. Hazard. Mater., 211-212, 317 (2012).
  14. B. Manna and U. C. Ghosh, "Adsorption of arsenic from aqueous solution on synthetic hydrous stannic oxide", J. Hazar. Mater., 144, 522 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.066
  15. L. Lorenzen, J. S. J. V. Deventer, and W. M. Landi, "Factors affecting the mechanism of the adsorption of arsenic species on activated carbon", Miner. Eng., 8, 557 (1995). https://doi.org/10.1016/0892-6875(95)00017-K
  16. T. N. Narayanan, Z. Liu, P. R. Lakshmy, W. Gao, Y. Nagaoka, D. S. Kumar, J. Lou, R. Vajtai, and P. M. Ajayan, "Synthesis of reduced grapheme oxide- $Fe_3O_4$ multifunctional freestanding membranes and their temperature dependent electronic transport properties", Carbon, 50, 1338 (2012). https://doi.org/10.1016/j.carbon.2011.11.005
  17. C. Wang, H. Luo, Z. Zhang, Y. Wu, J. Zhang, and S. Chen, "Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites", J. Hazard. Mater., 268, 124 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.009
  18. L. Guo, P. Ye, J. Wang, F. Fu, and Z. Wu, "Three-dimensional $Fe_3O_4$--graphene macroscopic composites for arsenic and arsenate removal", J. Hazard. Mater., 298, 28 (2015). https://doi.org/10.1016/j.jhazmat.2015.05.011
  19. L. Li, G. Zhou, Z. Weng, X. Y. Shan, F. Li, and H. M. Cheng, "Monolithic $Fe_2O_3$/graphene hybrid for highly efficient lithium storage and arsenic removal", Carbon, 67, 500 (2014). https://doi.org/10.1016/j.carbon.2013.10.022
  20. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101 (2013).
  21. T. H. Kim, "Current R&D trend of nanofiber membranes", Membr. J., 22, 395 (2012).
  22. Y. Tian, M. Wu, R. Liu, Y. Li, D. Wang, J. Tan, R. Wu, and Y. Huang, "Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment", Carbohydr. Polym., 83, 743 (2011). https://doi.org/10.1016/j.carbpol.2010.08.054
  23. W. G. Jang, J. H. Yun, K. S. Jeon, and H. S. Byun, "PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications", RSC Adv., 5, 46711 (2015). https://doi.org/10.1039/C5RA04439A
  24. W. G. Jang, J, H. Yun, and H. S. Byun, "Preparation of PAN nanofiber composite membrane with $Fe_3O_4$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  25. Y. Song, Z. He, H. Hou, X. Wang, and L. wang, "Architecture of $Fe_3O_4$-graphene oxide nanocomposite and its application as a platform for amino acid biosensing", Electrochim. Acta, 71, 58 (2012). https://doi.org/10.1016/j.electacta.2012.03.077
  26. J. W. Lee, H. R. Chae, Y. J. Won, K. B. Lee, C. H. Lee, H. H. Lee, I. C. Kim, and J. M. Lee, "Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment", J. Membr. Sci., 448, 223 (2013). https://doi.org/10.1016/j.memsci.2013.08.017
  27. D. Bhanushali, S. Kloos, C. Kurth, and D. Bhattacharyya, "Performance of solvent-resistant membranes for non-aqueous system: solvent permeation results and modeling", J. Membr. Sci., 189, 1 (2001). https://doi.org/10.1016/S0376-7388(01)00356-8