DOI QR코드

DOI QR Code

Prevalence, Associated Risk Factors, and Phylogenetic Analysis of Toxocara vitulorum Infection in Yaks on the Qinghai Tibetan Plateau, China

  • Li, Kun (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Lan, Yanfang (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Luo, Houqiang (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Zhang, Hui (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Liu, Dongyu (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Zhang, Lihong (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Gui, Rui (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Wang, Lei (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Shahzad, Muhammad (University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur) ;
  • Sizhu, Suolang (Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College) ;
  • Li, Jiakui (College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Chamba, Yangzom (Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College)
  • 투고 : 2016.08.01
  • 심사 : 2016.09.12
  • 발행 : 2016.10.31

초록

Toxocara vitulorum has been rarely reported in yaks at high altitudes and remote areas of Sichuan Province of Tibetan Plateau of China. The current study was designed to investigate the prevalence, associated risk factors, and phylogenetic characteristics of T. vitulorum in yak calves on the Qinghai Tibetan plateau. Fecal samples were collected from 891 yak calves and were examined for the presence of T. vitulorum eggs by the McMaster technique. A multivariable logistic regression model was employed to explore variables potentially associated with exposure to T. vitulorum infection. T. vitulorum specimens were collected from the feces of yaks in Hongyuan of Sichuan Province, China. DNA was extracted from ascaris. After PCR amplification, the sequencing of ND1 gene was carried out and phylogenetic analyses was performed by MEGA 6.0 software. The results showed that 64 (20.1%; 95% CI 15.8-24.9%), 75 (17.2; 13.8-21.1), 29 (40.9; 29.3-53.2), and 5 (7.6; 2.5-16.8) yak calves were detected out to excrete T. vitulorum eggs in yak calve feces in Qinghai, Tibet, Sichuan, and Gansu, respectively. The present study revealed that high infection and mortality by T. vitulorum is wildly spread on the Qinghai Tibetan plateau, China by fecal examination. Geographical origin, ages, and fecal consistencies are the risk factors associated with T. vitulorum prevalence by logistic regression analysis. Molecular detection and phylogenetic analysis of ND1 gene of T. vitulorum indicated that T. vitulorum in the yak calves on the Qinghai Tibetan plateau are homologous to preveiously studies reported.

키워드

참고문헌

  1. Davila G, Irsik M, Greiner EC. Toxocara vitulorum in beef calves in North Central Florida. Vet Parasitol 2010; 168: 261-263. https://doi.org/10.1016/j.vetpar.2009.11.026
  2. Dorny P, Devleesschauwer B, Stoliaroff V, Sothy M, Chea R, Chea B, Sourloing H, Samuth S, Kong S, Nguong K, Sorn S, Holl D, Vercruysse J. Prevalence and associated risk factors of Toxocara vitulorum infections in buffalo and cattle calves in three provinces of central Cambodia. Korean J Parasitol 2015; 53: 197-200. https://doi.org/10.3347/kjp.2015.53.2.197
  3. Borgsteede FH, Holzhauer M, Herder FL, Veldhuis-Wolterbeek EG, Hegeman C. Toxocara vitulorum in suckling calves in the Netherlands. Res Vet Sci 2012; 92: 254-256. https://doi.org/10.1016/j.rvsc.2010.11.008
  4. Ferreira FP, Starke-Buzetti WA. Detection of antibody to Toxocara vitulorum perienteric fluid antigens (Pe) in the colostrum and serum of buffalo calves and cows by Western blotting. Vet Parasitol 2005; 129: 119-124. https://doi.org/10.1016/j.vetpar.2005.01.002
  5. Rast L, Toribio JA, Dhand NK, Khounsy S, Windsor PA. Why are simple control options for Toxocara vitulorum not being implemented by cattle and buffalo smallholder farmers in South-East Asia? Prev Vet Med 2014; 113: 211-218. https://doi.org/10.1016/j.prevetmed.2013.10.021
  6. Li K, Gao JF, Shahzad M, Han Z, Nabi F, Liu M, Zhang D, Li J. Seroprevalence of Toxoplasma gondii infection in yaks (Bos grunniens) on the Qinghai-Tibetan Plateau of China. Vet Parasitol 2014; 205: 354-356. https://doi.org/10.1016/j.vetpar.2014.07.014
  7. Li JK, Li K, Shahzad M, Han ZQ, Nabi F, Gao JF, Han JM. Seroprevalence of bluetongue virus in domestic yaks (Bos grunniens) in Tibetan regions of China based on circulating antibodies. Trop Anim Health Prod 2015; 47: 1221-1223. https://doi.org/10.1007/s11250-015-0853-0
  8. Li K, Shahzad M, Han ZQ, Li JK. Seroepidemiology of Mycoplasma bovis infection in yaks (Bos grunniens) in Tibet and Hongyuan of Sichuan, China. Pak Vet J 2015; 35: 516-518.
  9. Nagataki M, Tantrawatpan C, Agatsuma T, Sugiura T, Duenngai K, Sithithaworn P, Andrews RH, Petney TN, Saijuntha W. Mitochondrial DNA sequences of 37 collar-spined echinostomes (Digenea: Echinostomatidae) in Thailand and Lao PDR reveals presence of two species: Echinostoma revolutum and E. miyagawai. Infect Genet Evol 2015; 35: 56-62. https://doi.org/10.1016/j.meegid.2015.07.022
  10. Thienpont D, Rochette F, .Vanparijs OFJ. Diagnosing helminthiasis by coprological examination. Beerse, Belgium. Janssen Research Foundation. 1986, p 205.
  11. Li XR. Color atlas of animal parasitosis (Second Edition). Beijing, China. Agriculture Press 2011.
  12. Li K, Luo H, Zhang H, Lan Y, Han Z, Shahzad M, Wang X, Qiu G, Huang S, Jiang W, Li J. First report of Metastrongylus pudendotectus by the genetic characterization of mitochondria genome of cox1 in pigs from Tibet, China. Vet Parasitol 2016; 223: 91-95. https://doi.org/10.1016/j.vetpar.2016.04.036
  13. Liu GH, Wang Y, Song HQ, Li MW, Ai L, Yu XL, Zhu XQ. Characterization of the complete mitochondrial genome of Spirocerca lupi: sequence, gene organization and phylogenetic implications. Parasit Vectors 2013; 6: 45. https://doi.org/10.1186/1756-3305-6-45
  14. Rostami S, Salavati R, Beech RN, Babaei Z, Sharbatkhori M, Harandi MF. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences. Parasitol Res 2015; 114: 1365-1376. https://doi.org/10.1007/s00436-015-4314-5
  15. Souza EMD, Starke-Buzetti WA, Ferreira FP, Neves MF, Machado RZ. Humoral immune response of water buffalo monitored with three different antigens of Toxocara vitulorum. Vet Parasitol 2004; 122: 67-78. https://doi.org/10.1016/j.vetpar.2004.03.013
  16. Bam J, Deori S, Paul V, Bhattacharya D, Bera AK, Bora L, Baruah KK. Seasonal prevalence of parasitic infection of yaks in Arunachal Pradesh, India. Asian Pac J Trop Dis 2012; 2: 264-267. https://doi.org/10.1016/S2222-1808(12)60058-9
  17. Roberts JA. The life cycle of Toxocara vitulorum in Asian buffalo (Bubalus bubalis). Int J Parasitol 1990; 20: 833-840. https://doi.org/10.1016/0020-7519(90)90020-N

피인용 문헌

  1. Analysis of the internal transcribed spacer region of Ascaris suum and Ascaris lumbricoides derived from free range Tibetan pigs vol.29, pp.4, 2018, https://doi.org/10.1080/24701394.2017.1331348
  2. Mitochondrial genome data confirm that yaks can serve as the intermediate host of Echinococcus canadensis (G10) on the Tibetan Plateau vol.11, pp.1, 2016, https://doi.org/10.1186/s13071-018-2684-0
  3. The impact of Bacillus subtilis 18 isolated from Tibetan yaks on growth performance and gut microbial community in mice vol.128, pp.None, 2016, https://doi.org/10.1016/j.micpath.2018.12.031
  4. The serodiagnostic potential of recombinant proteins TES–30 and TES–120 in an indirect ELISA in the diagnosis of toxocariasis in cattle, horses, and sheep vol.14, pp.3, 2016, https://doi.org/10.1371/journal.pone.0213830
  5. Molecular characterization and phylogenetic analysis of Toxocara species in dogs, cattle and buffalo in Egypt vol.57, pp.2, 2020, https://doi.org/10.2478/helm-2020-0013
  6. Morphological and Molecular Characterization of Toxocara apodemi (Nematoda: Ascarididae) from Striped Field Mice, Apodemus agrarius, in Korea vol.58, pp.4, 2020, https://doi.org/10.3347/kjp.2020.58.4.403
  7. Toxocariasis y vacunación para Toxocara: una revisión sistemática vol.24, pp.2, 2016, https://doi.org/10.22579/20112629.631
  8. Molecular characterization of ascaridoid parasites from captive wild carnivores in China using ribosomal and mitochondrial sequences vol.13, pp.1, 2020, https://doi.org/10.1186/s13071-020-04254-4
  9. Epidemiological Studies on Nematode Parasites of Domestic Geese (Anser anser f. domesticus) and First Molecular Identification and Phylogenetic Analysis of Heterakis dispar (Schrank, 1790) in Egypt vol.66, pp.4, 2016, https://doi.org/10.1007/s11686-021-00407-2
  10. Prevalence and risk factors of Toxocara vitulorum infection in buffalo calves in coastal, northeastern and northwestern regions of Bangladesh vol.26, pp.None, 2021, https://doi.org/10.1016/j.vprsr.2021.100656