DOI QR코드

DOI QR Code

절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening

  • 투고 : 2016.10.10
  • 심사 : 2016.11.01
  • 발행 : 2016.12.31

초록

지하공동 굴착현장에서 관찰되는 절리분포 양상에 대한 자료를 기반으로 굴착과정에서 형성될 수 있는 사면체 블록의 형상, 규모 및 붕락 가능성을 절리 영속성을 고려하여 예측하는 수치해석 기법을 개발하였다. 절리 영속성 분석결과를 이용하여 절리면의 확장성에 따른 개착면에서의 표출정도 및 블록형성 가능성 해석을 수행하는 기능을 고안하여 기존에 개발된 결정론적 3차원 블록해석모델에 접목시켰다. 개선된 수치해석모델의 신뢰성을 고찰하기 위하여 실제 블록 붕락이 발생된 굴착현장에 대한 해석을 수행하였다. 조사된 절리분포 양상에 의거하여 대표 방향성을 설정하고 잠재적 블록 형성을 분석하여 붕락된 블록 형상에 부합된 해석 결과를 도출하였으며, 이에 근거하여 굴착과정에서의 붕락 진행 미캐니즘을 블록형상을 고려하여 고찰하였다.

A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

키워드

참고문헌

  1. Arfken G. 1970. Mathematical methods for physicists. 2nd ed. New York. Academic Press.
  2. Baecher G. B. 1980. Progressively censored sampling of rock joint traces. J. of Mathematical Geology, Vol. 12, No. 1, pp. 33-40. https://doi.org/10.1007/BF01039902
  3. Baecher G.B., Lanney N.A. and Einstein H.H. 1977. Statistical description of rock properties and sampling. Proc. 18th US Symposium. Rock Mech. 5C1-1 - 5C1-8.
  4. Barton N., Bandis S.C. and Bakhtar K. 1985. Strength, deformation and conductivity of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 22. No. 3, pp. 121-140. https://doi.org/10.1016/0148-9062(85)93227-9
  5. Brady B.H.G. and Brown E.T. 2004. Rock Mechanics for Underground Mining. Kluwer Academic Publishers.
  6. Chern J.C. and Wang M.T. 1993. Computing 3-D key blocks delimited by joint traces on tunnel surfaces. Int. J. Rock Mech. Min. Sci. Vol. 30. No. 7. pp. 1599-1604. https://doi.org/10.1016/0148-9062(93)90163-8
  7. Cho T.F., Lee S.B. and Won K.S. 2012. Three-dimensional deterministic block analysis model for information-oriented excavation design. Int. J. Rock Mech. Min. Sci. Vol. 55. pp. 63-70.
  8. Einstein H. H., Veneziano D., Baecher G. B. and O'Reilly K. J. 1983. The effect of discontinuity persistence on rock slope stability. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 20, No. 5, pp. 227-236. https://doi.org/10.1016/0148-9062(83)90003-7
  9. Goodman R.E. and Shi G. 1985. Block Theory and its application to rock engineering, Prentice-Hall, London
  10. Lajtai E.Z. 1969. Shear strength of weakness planes in rock. Int. J. Rock Mech. Min. Sci. Vol. 6, pp. 499-515. https://doi.org/10.1016/0148-9062(69)90016-3
  11. Menendez-Diaz A., Gonzalez-Palacio C., Alvarez-Vigil A.E., Gonzalez-Nicieza C. and Ramirez-Oyanguren P. 2009. Analysis of tetrahedral and pentahedral key blocks in underground excavations. Comput Geotech. Vol. 36. pp. 1009-1023. https://doi.org/10.1016/j.compgeo.2009.03.013
  12. Pollard D. and Aydin A. 1988. Progress in understanding jointing over the past century. Geological Society of America Bulletin. Vol. 100. pp. 1181-1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
  13. Priest S.D. 1980. The use of inclined hemisphere projection methods for the determination of kinematic feasibility, slide direction and volume of rock blocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 17, pp. 1-23. https://doi.org/10.1016/0148-9062(80)90002-9
  14. Priest S. D. and Hudson J. A. 1981. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 18, pp. 183-197. https://doi.org/10.1016/0148-9062(81)90973-6
  15. Song J.J., Lee C.I. and Masahiro S. 2001. Stability analysis of rock blocks around a tunnel using a statistical joint modeling technique. Tunneling and Underground Space Technology. Vol. 16. pp. 341-351. https://doi.org/10.1016/S0886-7798(01)00063-3
  16. Villaescusa E. and Brown E. 1992. Maximum likelihood estimation of joint size from trace length measurements. Rock Mechanics and Rock Engineering. Vol. 25. pp. 67-87. https://doi.org/10.1007/BF01040513
  17. Warburton P. M. 1980. Stereological interpretation of joint trace data: influence of joint shape and implication for geological surveys. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 17, pp. 306-316.
  18. Yoon K.S., Cho T.F., You B.O. and Won K.S. 2003. A new approach for borehole joint investigation - Development of Discontinuity Orientation Measurement drilling system. Int. J. Rock Mech. Min. Sci. (Technology roadmap for rock mechanics, South Africa.). pp. 1355-1358.