DOI QR코드

DOI QR Code

연직바람관측장비와 레윈존데의 비교를 통한 난류 에너지 감소률의 특성 분석

An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde

  • 강우경 (한국교원대 환경교육과) ;
  • 문윤섭 (한국교원대 환경교육과) ;
  • 정옥진 (한국환경정책.평가연구원)
  • Kang, Woo Kyeong (Department of Environmental Education, Korea National University of Education) ;
  • Moon, Yun Seob (Department of Environmental Education, Korea National University of Education) ;
  • Jung, Ok Jin (Korea Environment Institute)
  • 투고 : 2016.12.06
  • 심사 : 2016.12.22
  • 발행 : 2016.12.31

초록

본 연구의 목적은 우리나라 추풍령 기상관측소에서 연직바람관측장비와 레윈존데 간 풍속 자료의 유효화를 통해 연직바람관측장비의 운영 프로그램인 PCL 1300 내 일관성 검사와 관련된 매개변수를 최적화하는 것이다. 그런 다음 2009년 3월부터 2010년 2월까지 맑은 날과 강수 발생일에 대한 난류 에너지 감소률의 특성(${\varepsilon}$)을 분석하는 것이다. 2010년 4월 22일부터 4월 23일까지 레윈존데와 연직바람관측장비의 바람 관측 자료를 비교한 결과, 동서(u) 성분과 남북(v) 성분의 바람에서 고도 3,000 m 이후에서 $10ms^{-1}$ 이상의 큰 차이를 나타내었다. 두 기기 사이 u 성분과 v 성분의 바람에 대한 풍속 차가 $10ms^{-1}$를 넘는 경우를 제외할 경우 두 바람 성분에 대한 상관계수는 각각 0.92와 0.88이었고, 제곱근 평균 오차는 각각 $3.07ms^{-1}$$1.06ms^{-1}$이었다. 이들 결과에 준하여 PCL1300 프로그램의 자료 처리 시간을 30분으로 조정하고, 최소 이용 자료는 전체의 60%로 조정할 경우가 비교적 작은 편의를 나타내었다. 한편 PCL1300 운영프로그램에서 u, v 성분의 일관성 검사에 대한 민감도 분석 결과, 시선속도 일관성, 동시성, 풍속 일관성 검사에서 u 성분에 대해서는 과소평가 되었고, 반면 v 성분에 대해서는 과대평가 되었다. 최종적으로 PCL1300 운영 프로그램의 최적화를 통해 맑은 날과 강수 발생일의 난류 에너지 감소률(${\varepsilon}$)을 분석한 결과, 각 고도에서 ${\varepsilon}$의 일별 및 계절별 평균은 강수 발생일이 맑은 날에 비해 높게 나타났는데, 이는 상승하강 기류에 따른 연직속도가 증가하였기 때문이다. 그리고 맑은 날과 강수 발생일 모두 계절별 ${\varepsilon}$ 평균은 겨울이 낮게 나타났는데, 이는 겨울이 다른 계절에 비해 수평 풍속이 강했기 때문이다. 결과적으로 연직속도가 ${\pm}10cm\;s^{-1}$ 이상에 해당하는 맑은 날과 강수 발생일의 ${\varepsilon}$ 값을 제외할 경우 강수발생일은 맑은 날에 비해 약 6-7배 ${\varepsilon}$이 높게 나타났으며, 연직속도를 모두 고려할 경우는 약 4-5배 더 높게 나타났다.

The purpose of this study is to optimize the parameters related to consensus coherency within the PCL 1300, the operating program of wind profiler, from a validation of wind data between rawinsonde and wind profiler at Chupungryeong ($36^{\circ}13^{\prime}$, $127^{\circ}59^{\prime}$) site in Korea. It is then to analyze the diurnal and seasonal characteristics of the turbulence energy dissipation rate (${\varepsilon}$) in clear and rainy days from March 2009 to February 2010. In comparison of the wind data between wind profiler and rawinsonde during April 22-23, 2010, it was shown in a big error more than $10ms^{-1}$ over the height of 3,000 meters in the zonal (u) and meridional (v) wind components. When removing more than $10ms^{-1}$ in each wind speed difference of u an v components between the two instruments, the correlation coefficients of these wind components were 0.92 and 0.88, respectively, and the root mean square errors were 3.07 and $1.06ms^{-1}$. Based on these results, when the data processing time and the minimum available data within the PCL 1300 program were adjusted as 30 minutes and 60%, respectively, the bias errors were small. In addition, as a result of an analysis of sensitivity to consensus coherency of u and v components within the PCL1300 program, u components were underestimated in radial coherency, instantaneous and winbarbs coherency, whereas v components were overestimated. Finally by optimizing parameters of the PCL1300 program, the diurnal and seasonal means of ${\varepsilon}$ at each height were higher in rainy days than those in clear days because of increasing in the vertical wind speed due to upward and downward motions. The mean ${\varepsilon}$ for clear and rainy days in winter was lower than those of other seasons, due to stronger horizontal wind speed in winter than those in other seasons. Consequently, when the turbulence energy dissipation rates in the vertical wind speed of more than ${\pm}10cm\;s^{-1}$ were excluded for clear and rainy days, the mean ${\varepsilon}$ in rainy days was 6-7 times higher than that in clear days, but when considering them, it was 4-5 times higher.

키워드

참고문헌

  1. Angevine, W.M., White, A.B., and Avery, S.K., 1994, Boundary-layer depth and enterainment zone characterization with a boundary-layer profiler. Bound-Layer Meteorology, 68, 375-385. https://doi.org/10.1007/BF00706797
  2. Baek, S.K., Cho, C.H., Kim, J.H., and Song, H.Y., 2005, Analyses of precipitaition cases using wind profiler. Journal of the Korean Meteorological Society, 41, 1-16. (in Korean)
  3. Cho, J.Y., Heo, B.H., Kim, J.Y. and Lee, J.A., 2005, Operating manuals for wind profiler. Technical Note, Korean Meteorological Administration 2005-3, 11-30. (in Korean)
  4. Cohn, S.A., 1995, Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. Journal of Atmospheric Oceanic Technology, 12, 85-95. https://doi.org/10.1175/1520-0426(1995)012<0085:RMOTED>2.0.CO;2
  5. Cohn, S.A., Hollowa, C.L., Oncley, S.P., Doviak, R.J., and Lataitis, R., 1997, Validation of a UHF spaced antenna wind profiler for high-resolution boundary layer observations. Radio Science, 32, 279-1296.
  6. Frison, A.S. and Clifford, S.F., 1974, A study of convection capped by a stable layer using Doppler radar and acoustic echo sounders. Journal of Atmospheric Science, 31, 1622-1628. https://doi.org/10.1175/1520-0469(1974)031<1622:ASOCCB>2.0.CO;2
  7. Ham, D.J., Choi, M.K., You, J.H., Kim, H.S., and Jang, Y.J., 2005, An analysis of heavy snow cases using the wind profiler observation data at Yeongdo in Kangwon, Korea. Spring Conferene of Korean Meteorological Society, 284-285. (in Korean)
  8. Heo, B.H., Jacoby-Koaly, S., Kim, K.E., Campistron, B., Benech, B., and Jung, E.S., 2003, Use of the Doppler spectral width to improve the estimation of the convective boundary layer height from UHF wind profiler observations. Journal Atmospheric Oceanic Technology, 20, 408-424. (in Korean) https://doi.org/10.1175/1520-0426(2003)020<0408:UOTDSW>2.0.CO;2
  9. Heo, B.H., 2014, Wind profiler and atmospheric sounding. The press of Heongrung Science, 20-25. (in Korean)
  10. Jung, S.H. and Lee, G.W.. 2010, Statistical characteristics of atmospheric conditions related to radar beam propagation using radiosonde data in 2005-2006. Journal of Korean Earth Science Society, 31, 584-599. (in Korean) https://doi.org/10.5467/JKESS.2010.31.6.584
  11. Jocoby-Koaly, S., Campistron, B., Bernard, S., Benech, B., Ardhuin-Girard, F., Dessens, J., Dupont, E., and Carissimo, B., 2002, Turbluent dissipation rate in the bdundary-layer via UHF wind profiler Doppler spectral width measurements. Boundary-Layer Meteorology, 103, 361-389. https://doi.org/10.1023/A:1014985111855
  12. Kalapureddy, M.C.R., Kishore Kumar, K., Sivakumar, V., Ghosh, A.K., Jain, A.R., and Krishna Reddy, K., 2007, Diurnal and seasonal variability of TKE dissipation rate in ABL over a tropical station using UHF wind profiler. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 419-430. https://doi.org/10.1016/j.jastp.2006.10.016
  13. Lane, S.E., Barlow, J.F., and Wood, C.R., 2013, An Assessment of a three-beam Doppler lidar wind profiling method for use in urban areas. Jounal of Wind Engineering Industry Aerodynamics, 119, 53-59. https://doi.org/10.1016/j.jweia.2013.05.010
  14. Lee, S.J. and Yoo, H.D., 2005, Verification of the modelpredicted mixed layer height using wind profiler data. Meteorological Technic, 1, 1-13. (in Korean)
  15. Lim, A.Y., Roh, J.W., Jee, J.B., and Choi, Y.J., 2015, Sensitivity experiments of vertical resolution and planetary boundary layer parameterization schemes on the Seoul metropolitan area using WRF model. Journal of Korean Earth Science Society, 36, 553-566. (in Korean) https://doi.org/10.5467/JKESS.2015.36.6.553
  16. Lim, Y.K., Song, S.K., and Han, S.O., 2014, Data assimilation effect of mobile rawinsonde observation using unified model observing system experiment during the summer intensive observation period in 2013. Journal of the Korean Earth Science Society, 35, 215-224. (in Korean) https://doi.org/10.5467/JKESS.2014.35.4.215
  17. Maruri, M., Romo, J.A., and Gomez, L., 2014, Aspects of quality control of wind profiler measurements in complex topography. Atmospheric Measurement Technology, 7, 135-148. https://doi.org/10.5194/amt-7-135-2014
  18. Mead, J.B., Hopcraft, G., Frasier, S.J., Pollard, B.D., Cherry, C.D., Schaubert, D.H., and Mcintosh, R.E., 1998, A volume-imaging radar wind profiler for atmospheric boundary layer turbulence studies. Journal of Atmospheric Oceanic Technology, 15, 849-859. https://doi.org/10.1175/1520-0426(1998)015<0849:AVIRWP>2.0.CO;2
  19. Merritt, D.A., 1995, A statistical averaging method for wind profiler Doppler spectra. Journal of Atmospheric Oceanic Technology, 12, 985-995. https://doi.org/10.1175/1520-0426(1995)012<0985:ASAMFW>2.0.CO;2
  20. Nielsen-Gammon, J.W., McNider, R.T., Angevine, W.M., White, A.B., and Knupp, K., 2007, Mesoscale model performance with assimilation of wind profiler data: Sensitivity to assimilation parameters and network configuration. Journal of Geophysical Research, 112, D09119.
  21. Park, O.R., Kim, Y.S., and Cho, C.H., 2005, The observing system experiments with the windprofiler and autosonde at Heanam. Journal of the Korean Meteorological Society, 41, 57-71. (in Korean)
  22. Ralph, F.M., Neiman, P.J., and Ruffieux, D., 1996, Precipitation identification from radar wind profiler spectral moment data: Vertical velocity histograms, velocity variance and signal power-vertical velocity correlations. Journal of Atmospheric Oceanic Technology, 13, 545-559. https://doi.org/10.1175/1520-0426(1996)013<0545:PIFRWP>2.0.CO;2
  23. Schumann, R., Taylor, G.E., Merceret, F.J., and Wilfong, T.L., 1999, Performance characteristics of the Kennedy space center 50 MHz Doppler radar wind profiler using the median filter/first-guess data reduction algorithm. Journal of Atmospheric Oceanic Technology, 16, 532-549. https://doi.org/10.1175/1520-0426(1999)016<0532:PCOTKS>2.0.CO;2
  24. Van Zandt, T.E., 2000, A brief history of the development of wind-profiling or MST radars. Annual Geophysicae, 18, 740-749. https://doi.org/10.1007/s00585-000-0740-4
  25. Weber, B.L., Wuertz, D.B., Welsh, D.C., and McPeek, R., 1993, Quality controls for profiler measurements of winds and RASS temperatures. Journal of Atmospheric Oceanic Technology, 10, 452-464. https://doi.org/10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2
  26. White, A.B., Lataitis, R.J., and Lawrence, R.S., 1999, Space and time filtering of remotely sensed velocity turbulence. Jourmal of Atmospheric and Oceanic Technology. 16, 1967-1972. https://doi.org/10.1175/1520-0426(1999)016<1967:SATFOR>2.0.CO;2
  27. Won, H.Y., Cho, C.H., and Baek, S.K., 2006, Classification of precipitation type using the wind profiler observations and analysis of the associated synoptic conditions: Years 2003-2005. Atmosphere, 16, 235-246. (in Korean)