References
-
P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, "Effects of heavy alkali elements in
$Cu(In,Ga)Se_2$ solar cells with efficiencies upto 22.6%," physica status solidi (RRL) - Rapid Research Letters, vol. 10, no. 8, pp. 583-586, 2016. https://doi.org/10.1002/pssr.201600199 - D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, "The path towards a highperformance solution- processed kesterite solar cell," Solar Energy Materials and Solar Cells, vol. 95, no. 6, pp. 1421-1436, 2011. https://doi.org/10.1016/j.solmat.2010.11.028
-
S. Chen, A. Walsh, X.-G. Gong and S.-H. Wei, "Classification of Lattice Defects in the Kesterite
$Cu_2ZnSnS_4$ and$Cu_2ZnSnSe_4$ Earth- Abundant Solar Cell Absorbers," Advanced Materials, vol. 25, no. 11, pp. 1522-1539, 2013. https://doi.org/10.1002/adma.201203146 -
S. Botti, D. Kammerlander and M. A. L. Marques, "Band structures of
$Cu_2ZnSnS_4$ and$Cu_2ZnSnSe_4$ from many-body methods," Applied Physics Letters, vol. 98, no. 24, pp. 241915, 2011. https://doi.org/10.1063/1.3600060 -
S. Chen, X. G. Gong, A. Walsh and S.-H. Wei, "Crystal and electronic band structure of
$Cu_2ZnSnX_4$ (X=S and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94, no. 4, pp. 041903, 2009. https://doi.org/10.1063/1.3074499 -
H. Wang, "Progress in Thin Film Solar Cells Based on
$Cu_2ZnSnS_4$ ," International Journal of Photoenergy, vol. 2011, pp. 10, 2011. -
D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed
$Cu_2ZnSn(Se,S)_4$ solar cell," Progress in Photovoltaics: Research and Applications, vol. 20, no. 1, pp. 6-11, 2012. https://doi.org/10.1002/pip.1160 - W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Advanced Energy Materials, vol. 4, no. 7, pp. n/a-n/a, 2014.
-
J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto and D. B. Mitzi, "High Efficiency
$Cu_2ZnSn(S,Se)_4$ Solar Cells by Applying a Double$In_2S_3/CdS$ Emitter," Advanced Materials, vol. 26, no. 44, pp. 7427-7431, 2014. https://doi.org/10.1002/adma.201402373 - K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang and D.-H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10151-10158, 2016. https://doi.org/10.1039/C6TA01558A
-
S. W. Seo, J.-O. Jeon, J. W. Seo, Y. Y. Yu, J.-h. Jeong, D.-K. Lee, H. Kim, M. J. Ko, H. J. Son, H. W. Jang and J. Y. Kim, "Compositional and Interfacial Modification of
$Cu_2ZnSn(S,Se)_4$ Thin- Film Solar Cells Prepared by Electro chemical Deposition," ChemSusChem, vol. 9, no. 5, pp. 439-444, 2016. https://doi.org/10.1002/cssc.201501256 -
Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus and S. Guha, "
$Cu_2ZnSnSe_4$ Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length," Advanced Energy Materials, vol. 5, no. 7, pp. 1401372, 2015. https://doi.org/10.1002/aenm.201401372 -
S. Oueslati, G. Brammertz, M. BuffiBre, H. ElAnzeery, O. Touayar, C. KBble, J. Bekaert, M. Meuris and J. Poortmans, "Physical and electrical characterization of high-performance
$Cu_2ZnSnSe_4$ based thin film solar cells," Thin Solid Films, vol. 582, pp. 224-228, 2015. https://doi.org/10.1016/j.tsf.2014.10.052 -
D. Hironiwa, J. Chantana, N. Sakai, T. Kato, H. Sugimoto and T. Minemoto, "Application of multi-buffer layer of (Zn,Mg)O/CdS in
$Cu_2ZnSn(Se,S)_4$ solar cells," Current Applied Physics, vol. 15, no. 3, pp. 383-388, 2015. https://doi.org/10.1016/j.cap.2015.01.011 -
S. Giraldo, T. Thersleff, G. Larramona, M. Neuschitzer, P. Pistor, K. Leifer, A. P rez-Rodr guez, C. Moisan, G. Dennler and E. Saucedo, "
$Cu_2ZnSnSe_4$ solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer," Progress in Photovoltaics: Research and Applications, vol. 24, no. 10, pp. 1359-1367, 2016. https://doi.org/10.1002/pip.2797 -
J. Li, H. Wang, L. Wu, C. Chen, Z. Zhou, F. Liu, Y. Sun, J. Han and Y. Zhang, "Growth of
$Cu_2ZnSnSe_4$ Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency," ACS Applied Materials & Interfaces, vol. 8, no. 16, pp. 10283-10292, 2016. https://doi.org/10.1021/acsami.6b00081 -
K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J. A. Stride, M. Green and X. Hao, "Over 9% Efficient Kesterite
$Cu_2ZnSnS_4$ Solar Cell Fabricated by Using$Zn_{1-x}Cd_xS$ Buffer Layer," Advanced Energy Materials, vol. 6, no. 12, pp.1600046, 2016. https://doi.org/10.1002/aenm.201600046 - S. A. Vanalakar, S. W. Shin, G. L. Agawane, M. P. Suryawanshi, K. V. Gurav, P. S. Patil and J. H. Kim, "Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films," Ceramics International, vol. 40, no. 9, Part B, pp. 15097-15103, 2014. https://doi.org/10.1016/j.ceramint.2014.06.121
-
X. Jin, C. Yuan, L. Zhang, G. Jiang, W. Liu and C. Zhu, "Pulsed laser deposition of
$Cu_2ZnSn(S_xSe_{1−x})_4$ thin film solar cells using quaternary oxide target prepared by combustion method," Solar Energy Materials and Solar Cells, vol. 155, pp. 216-225, 2016. https://doi.org/10.1016/j.solmat.2016.06.022 - W.-C. Hsu, I. Repins, C. Beall, C. DeHart, G. Teeter, B. To, Y. Yang and R. Noufi, "The effect of Zn excess on kesterite solar cells," Solar Energy Materials and Solar Cells, vol. 113, pp. 160-164, 2013. https://doi.org/10.1016/j.solmat.2013.02.015
-
A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale and S. Siebentritt, "Different Bandgaps in
$Cu_2ZnSnSe_4$ : A High Temperature Co evaporation Study," IEEE Journal of Photovoltaics, vol. 5, no. 2, pp. 641-648, 2015. https://doi.org/10.1109/JPHOTOV.2014.2377561 -
S. Kim, K. M. Kim, H. Tampo, H. Shibata, K. Matsubara and S. Niki, "Ge-incorporated
$Cu_2ZnSnSe_4$ thin-film solar cells with efficiency greater than 10%," Solar Energy Materials and Solar Cells, vol. 144, pp. 488-492, 2016. https://doi.org/10.1016/j.solmat.2015.09.039 -
T. Aizawa, K. Tanaka, K. Tagami and H. Uchiki, "Investigation of ZnO:Al window layer of
$Cu_2ZnSnS_4$ thin film solar cells prepared by non-vacuum processing,"physica status solidi (c), vol. 10, no. 7-8, pp. 1050-1054, 2013. https://doi.org/10.1002/pssc.201200694 -
J. W. Cho, A. Ismail, S. J. Park, W. Kim, S. Yoon and B. K. Min, "Synthesis of
$Cu_2ZnSnS_4$ Thin Films by a Precursor Solution Pastefor Thin Film Solar Cell Applications," ACS Applied Materials & Interfaces, vol. 5, no. 10, pp. 4162-4165, 2013. https://doi.org/10.1021/am401210w -
W. Zhao, G. Wang, Q. Tian, Y. Yang, L. Huang and D. Pan, "Fabrication of
$Cu_2ZnSn(S,Se)_4$ Solar Cells via an Ethanol-Based Sol-Gel Route Using$SnS_2$ as Sn Source," ACS Applied Materials & Interfaces, vol. 6, no. 15, pp. 12650-12655, 2014. https://doi.org/10.1021/am5026006 - Z. Su, W. Li, G. Asim, T. Y. Fan and L. H. Wong, "Cation substitution of CZTS solar cell with 10% efficiency," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Ed., pp. 0534-0538, 2016.
-
Y. Zhang, C. Liao, K. Zong, H. Wang, J. Liu, T. Jiang, J. Han, G. Liu, L. Cui, Q. Ye, H. Yan and W. Lau, "
$Cu_2ZnSnSe_4$ thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu-Zn-Snprecursors," Solar Energy, vol. 94, pp. 1-7, 2013. https://doi.org/10.1016/j.solener.2013.05.002 -
J. Ge, J. Jiang, P. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang and J. Chu, "A 5.5% efficient co-electrodeposited ZnO/CdS/
$Cu_2ZnSnS_4$ /Mo thin film solar cell," Solar Energy Materials and Solar Cells, vol. 125, pp. 20-26, 2014. https://doi.org/10.1016/j.solmat.2014.02.020 -
F. Jiang, S. Ikeda, Z. Tang, T. Minemoto, W. Septina, T. Harada and M. Matsumura, "Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of
$Cu_2ZnSnS_4$ absorbers for thin-film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 12, pp. 1884-1895, 2015. https://doi.org/10.1002/pip.2638 -
W.-C. Hsu, H. Zhou, S. Luo, T.-B. Song, Y.-T. Hsieh, H.-S. Duan, S. Ye, W. Yang, C.-J. Hsu, C. Jiang, B. Bob and Y. Yang, "Spatial Element Distribution Control in a Fully Solution-Processed Nanocrystals-Based 8.6 %
$Cu_2ZnSn(S,Se)_4$ Device," ACS Nano, vol. 8, no. 9, pp. 9164-9172, 2014. https://doi.org/10.1021/nn503992e -
C. K. Miskin, W.-C. Yang, C. J. Hages, N. J. Carter, C. S. Joglekar, E. A. Stach and R. Agrawal, "9.0% efficient
$Cu_2ZnSn(S,Se)_4$ solar cells from selenized nanoparticle inks," Progress in Photovoltaics: Research and Applications, vol. 23, no. 5, pp. 654-659, 2015. https://doi.org/10.1002/pip.2472 -
X. Jin, J. Li, G. Chen, C. Xue, W. Liu and C. Zhu, "Preparation of
$Cu_2ZnSnS_4$ -based thin film solar cells by a combustion method," Solar Energy Materials and Solar Cells, vol. 146, pp. 16-24, 2016. https://doi.org/10.1016/j.solmat.2015.11.027 -
S.-Y. Wei, Y.-C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang and C.-H. Lai, "Achieving high efficiency
$Cu_2ZnSn(S,Se)_4$ solar cells by non-toxic aqueous ink: Defect analysis and electrical modeling," Nano Energy, vol. 26, pp. 74-82, 2016. https://doi.org/10.1016/j.nanoen.2016.04.059 -
M. G. Gang, S. W. Shin, C. W. Hong, K. V. Gurav, J. Gwak, J. H. Yun, J. Y. Lee and J. H. Kim, "Sputtering processed highly efficient
$Cu_2ZnSn(S,Se)_4$ solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy," Green Chemistry, vol. 18, no. 3, pp. 700-711, 2016. https://doi.org/10.1039/C5GC02417J - A. V. Moholkar, S. S. Shinde, G. L. Agawane, S.H. Jo, K. Y. Rajpure, P. S. Patil, C. H. Bhosaleand J. H. Kim, "Studies of compositionaldependent CZTS thin film solar cells by pulsedlaser deposition technique: An attempt toimprove the efficiency," Journal of Alloys andCompounds, vol. 544, pp. 145-151, 2012. https://doi.org/10.1016/j.jallcom.2012.07.108
-
G. Y. Kim, D.-H. Son, T. Thi Thu Nguyen, S.Yoon, M. Kwon, C.-W. Jeon, D.-H. Kim, J.-K.Kang and W. Jo, "Enhancement of photoconversionefficiency in
$Cu_2ZnSn(S,Se)_4$ thin-filmsolar cells by control of ZnS precursor-layerthickness," Progress in Photovoltaics: Researchand Applications, vol. 24, no. 3, pp. 292-306,2016. https://doi.org/10.1002/pip.2693 -
S. W. Shin, K. V. Gurav, C. W. Hong, J. Gwak, H.R. Choi, S. A. Vanalakar, J. H. Yun, J. Y. Lee, J.H. Moon and J. H. Kim, "Phase segregations andthickness of the
$Mo(S,Se)_2$ layer in$Cu_2ZnSn(S,Se)_4$ solar cells at different sulfurizationtemperatures,"Solar Energy Materials and SolarCells, vol. 143, pp. 480-487, 2015. https://doi.org/10.1016/j.solmat.2015.07.023 -
D. B. Khadka, S. Kim and J. Kim, "A NonvacuumApproach for Fabrication of
$Cu_2ZnSnSe_4/In_2S_3$ Thin Film Solar Cell and OptoelectronicCharacterization,"The Journal of Physical Chemistry C, vol. 119, no. 22, pp. 12226-12235, 2015. https://doi.org/10.1021/acs.jpcc.5b03193 -
Y. Hwang, B.-I. Park, B.-S. Lee, J. Y. Kim, J.-H.Jeong, H. Kim, M. J. Ko, B. Kim, H. J. Son, S. Y.Lee, J.-S. Lee, J.-K. Park, S.-H. Cho and D.-K.Lee, "Influences of Extended Selenization on
$Cu_2ZnSnS_4$ Solar Cells Prepared from QuaternaryNanocrystalInk," The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 27657-27663, 2014. https://doi.org/10.1021/jp508028t