CZTS 박막 태양전지 최신 연구 동향

  • 조은애 (신소재공학부 전남대학교) ;
  • 강명길 (신소재공학부 전남대학교) ;
  • 홍창우 (신소재공학부 전남대학교) ;
  • 장준성 (신소재공학부 전남대학교) ;
  • 김인영 (전기전자컴퓨터공학부 광주과학기술원) ;
  • 김진혁 (신소재공학부 전남대학교)
  • Published : 2016.12.31

Abstract

Keywords

References

  1. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, "Effects of heavy alkali elements in $Cu(In,Ga)Se_2$ solar cells with efficiencies upto 22.6%," physica status solidi (RRL) - Rapid Research Letters, vol. 10, no. 8, pp. 583-586, 2016. https://doi.org/10.1002/pssr.201600199
  2. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, "The path towards a highperformance solution- processed kesterite solar cell," Solar Energy Materials and Solar Cells, vol. 95, no. 6, pp. 1421-1436, 2011. https://doi.org/10.1016/j.solmat.2010.11.028
  3. S. Chen, A. Walsh, X.-G. Gong and S.-H. Wei, "Classification of Lattice Defects in the Kesterite $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ Earth- Abundant Solar Cell Absorbers," Advanced Materials, vol. 25, no. 11, pp. 1522-1539, 2013. https://doi.org/10.1002/adma.201203146
  4. S. Botti, D. Kammerlander and M. A. L. Marques, "Band structures of $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ from many-body methods," Applied Physics Letters, vol. 98, no. 24, pp. 241915, 2011. https://doi.org/10.1063/1.3600060
  5. S. Chen, X. G. Gong, A. Walsh and S.-H. Wei, "Crystal and electronic band structure of $Cu_2ZnSnX_4$ (X=S and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94, no. 4, pp. 041903, 2009. https://doi.org/10.1063/1.3074499
  6. H. Wang, "Progress in Thin Film Solar Cells Based on $Cu_2ZnSnS_4$," International Journal of Photoenergy, vol. 2011, pp. 10, 2011.
  7. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed $Cu_2ZnSn(Se,S)_4$ solar cell," Progress in Photovoltaics: Research and Applications, vol. 20, no. 1, pp. 6-11, 2012. https://doi.org/10.1002/pip.1160
  8. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Advanced Energy Materials, vol. 4, no. 7, pp. n/a-n/a, 2014.
  9. J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto and D. B. Mitzi, "High Efficiency $Cu_2ZnSn(S,Se)_4$ Solar Cells by Applying a Double $In_2S_3/CdS$ Emitter," Advanced Materials, vol. 26, no. 44, pp. 7427-7431, 2014. https://doi.org/10.1002/adma.201402373
  10. K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang and D.-H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10151-10158, 2016. https://doi.org/10.1039/C6TA01558A
  11. S. W. Seo, J.-O. Jeon, J. W. Seo, Y. Y. Yu, J.-h. Jeong, D.-K. Lee, H. Kim, M. J. Ko, H. J. Son, H. W. Jang and J. Y. Kim, "Compositional and Interfacial Modification of $Cu_2ZnSn(S,Se)_4$ Thin- Film Solar Cells Prepared by Electro chemical Deposition," ChemSusChem, vol. 9, no. 5, pp. 439-444, 2016. https://doi.org/10.1002/cssc.201501256
  12. Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus and S. Guha, "$Cu_2ZnSnSe_4$ Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length," Advanced Energy Materials, vol. 5, no. 7, pp. 1401372, 2015. https://doi.org/10.1002/aenm.201401372
  13. S. Oueslati, G. Brammertz, M. BuffiBre, H. ElAnzeery, O. Touayar, C. KBble, J. Bekaert, M. Meuris and J. Poortmans, "Physical and electrical characterization of high-performance $Cu_2ZnSnSe_4$ based thin film solar cells," Thin Solid Films, vol. 582, pp. 224-228, 2015. https://doi.org/10.1016/j.tsf.2014.10.052
  14. D. Hironiwa, J. Chantana, N. Sakai, T. Kato, H. Sugimoto and T. Minemoto, "Application of multi-buffer layer of (Zn,Mg)O/CdS in $Cu_2ZnSn(Se,S)_4$ solar cells," Current Applied Physics, vol. 15, no. 3, pp. 383-388, 2015. https://doi.org/10.1016/j.cap.2015.01.011
  15. S. Giraldo, T. Thersleff, G. Larramona, M. Neuschitzer, P. Pistor, K. Leifer, A. P rez-Rodr guez, C. Moisan, G. Dennler and E. Saucedo, "$Cu_2ZnSnSe_4$ solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer," Progress in Photovoltaics: Research and Applications, vol. 24, no. 10, pp. 1359-1367, 2016. https://doi.org/10.1002/pip.2797
  16. J. Li, H. Wang, L. Wu, C. Chen, Z. Zhou, F. Liu, Y. Sun, J. Han and Y. Zhang, "Growth of $Cu_2ZnSnSe_4$ Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency," ACS Applied Materials & Interfaces, vol. 8, no. 16, pp. 10283-10292, 2016. https://doi.org/10.1021/acsami.6b00081
  17. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J. A. Stride, M. Green and X. Hao, "Over 9% Efficient Kesterite $Cu_2ZnSnS_4$ Solar Cell Fabricated by Using $Zn_{1-x}Cd_xS$ Buffer Layer," Advanced Energy Materials, vol. 6, no. 12, pp.1600046, 2016. https://doi.org/10.1002/aenm.201600046
  18. S. A. Vanalakar, S. W. Shin, G. L. Agawane, M. P. Suryawanshi, K. V. Gurav, P. S. Patil and J. H. Kim, "Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films," Ceramics International, vol. 40, no. 9, Part B, pp. 15097-15103, 2014. https://doi.org/10.1016/j.ceramint.2014.06.121
  19. X. Jin, C. Yuan, L. Zhang, G. Jiang, W. Liu and C. Zhu, "Pulsed laser deposition of $Cu_2ZnSn(S_xSe_{1−x})_4$ thin film solar cells using quaternary oxide target prepared by combustion method," Solar Energy Materials and Solar Cells, vol. 155, pp. 216-225, 2016. https://doi.org/10.1016/j.solmat.2016.06.022
  20. W.-C. Hsu, I. Repins, C. Beall, C. DeHart, G. Teeter, B. To, Y. Yang and R. Noufi, "The effect of Zn excess on kesterite solar cells," Solar Energy Materials and Solar Cells, vol. 113, pp. 160-164, 2013. https://doi.org/10.1016/j.solmat.2013.02.015
  21. A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale and S. Siebentritt, "Different Bandgaps in $Cu_2ZnSnSe_4$: A High Temperature Co evaporation Study," IEEE Journal of Photovoltaics, vol. 5, no. 2, pp. 641-648, 2015. https://doi.org/10.1109/JPHOTOV.2014.2377561
  22. S. Kim, K. M. Kim, H. Tampo, H. Shibata, K. Matsubara and S. Niki, "Ge-incorporated $Cu_2ZnSnSe_4$ thin-film solar cells with efficiency greater than 10%," Solar Energy Materials and Solar Cells, vol. 144, pp. 488-492, 2016. https://doi.org/10.1016/j.solmat.2015.09.039
  23. T. Aizawa, K. Tanaka, K. Tagami and H. Uchiki, "Investigation of ZnO:Al window layer of $Cu_2ZnSnS_4$ thin film solar cells prepared by non-vacuum processing,"physica status solidi (c), vol. 10, no. 7-8, pp. 1050-1054, 2013. https://doi.org/10.1002/pssc.201200694
  24. J. W. Cho, A. Ismail, S. J. Park, W. Kim, S. Yoon and B. K. Min, "Synthesis of $Cu_2ZnSnS_4$ Thin Films by a Precursor Solution Pastefor Thin Film Solar Cell Applications," ACS Applied Materials & Interfaces, vol. 5, no. 10, pp. 4162-4165, 2013. https://doi.org/10.1021/am401210w
  25. W. Zhao, G. Wang, Q. Tian, Y. Yang, L. Huang and D. Pan, "Fabrication of $Cu_2ZnSn(S,Se)_4$ Solar Cells via an Ethanol-Based Sol-Gel Route Using $SnS_2$ as Sn Source," ACS Applied Materials & Interfaces, vol. 6, no. 15, pp. 12650-12655, 2014. https://doi.org/10.1021/am5026006
  26. Z. Su, W. Li, G. Asim, T. Y. Fan and L. H. Wong, "Cation substitution of CZTS solar cell with 10% efficiency," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Ed., pp. 0534-0538, 2016.
  27. Y. Zhang, C. Liao, K. Zong, H. Wang, J. Liu, T. Jiang, J. Han, G. Liu, L. Cui, Q. Ye, H. Yan and W. Lau, "$Cu_2ZnSnSe_4$ thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu-Zn-Snprecursors," Solar Energy, vol. 94, pp. 1-7, 2013. https://doi.org/10.1016/j.solener.2013.05.002
  28. J. Ge, J. Jiang, P. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang and J. Chu, "A 5.5% efficient co-electrodeposited ZnO/CdS/$Cu_2ZnSnS_4$/Mo thin film solar cell," Solar Energy Materials and Solar Cells, vol. 125, pp. 20-26, 2014. https://doi.org/10.1016/j.solmat.2014.02.020
  29. F. Jiang, S. Ikeda, Z. Tang, T. Minemoto, W. Septina, T. Harada and M. Matsumura, "Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of $Cu_2ZnSnS_4$ absorbers for thin-film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 12, pp. 1884-1895, 2015. https://doi.org/10.1002/pip.2638
  30. W.-C. Hsu, H. Zhou, S. Luo, T.-B. Song, Y.-T. Hsieh, H.-S. Duan, S. Ye, W. Yang, C.-J. Hsu, C. Jiang, B. Bob and Y. Yang, "Spatial Element Distribution Control in a Fully Solution-Processed Nanocrystals-Based 8.6 % $Cu_2ZnSn(S,Se)_4$ Device," ACS Nano, vol. 8, no. 9, pp. 9164-9172, 2014. https://doi.org/10.1021/nn503992e
  31. C. K. Miskin, W.-C. Yang, C. J. Hages, N. J. Carter, C. S. Joglekar, E. A. Stach and R. Agrawal, "9.0% efficient $Cu_2ZnSn(S,Se)_4$ solar cells from selenized nanoparticle inks," Progress in Photovoltaics: Research and Applications, vol. 23, no. 5, pp. 654-659, 2015. https://doi.org/10.1002/pip.2472
  32. X. Jin, J. Li, G. Chen, C. Xue, W. Liu and C. Zhu, "Preparation of $Cu_2ZnSnS_4$-based thin film solar cells by a combustion method," Solar Energy Materials and Solar Cells, vol. 146, pp. 16-24, 2016. https://doi.org/10.1016/j.solmat.2015.11.027
  33. S.-Y. Wei, Y.-C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang and C.-H. Lai, "Achieving high efficiency $Cu_2ZnSn(S,Se)_4$ solar cells by non-toxic aqueous ink: Defect analysis and electrical modeling," Nano Energy, vol. 26, pp. 74-82, 2016. https://doi.org/10.1016/j.nanoen.2016.04.059
  34. M. G. Gang, S. W. Shin, C. W. Hong, K. V. Gurav, J. Gwak, J. H. Yun, J. Y. Lee and J. H. Kim, "Sputtering processed highly efficient $Cu_2ZnSn(S,Se)_4$ solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy," Green Chemistry, vol. 18, no. 3, pp. 700-711, 2016. https://doi.org/10.1039/C5GC02417J
  35. A. V. Moholkar, S. S. Shinde, G. L. Agawane, S.H. Jo, K. Y. Rajpure, P. S. Patil, C. H. Bhosaleand J. H. Kim, "Studies of compositionaldependent CZTS thin film solar cells by pulsedlaser deposition technique: An attempt toimprove the efficiency," Journal of Alloys andCompounds, vol. 544, pp. 145-151, 2012. https://doi.org/10.1016/j.jallcom.2012.07.108
  36. G. Y. Kim, D.-H. Son, T. Thi Thu Nguyen, S.Yoon, M. Kwon, C.-W. Jeon, D.-H. Kim, J.-K.Kang and W. Jo, "Enhancement of photoconversionefficiency in $Cu_2ZnSn(S,Se)_4$ thin-filmsolar cells by control of ZnS precursor-layerthickness," Progress in Photovoltaics: Researchand Applications, vol. 24, no. 3, pp. 292-306,2016. https://doi.org/10.1002/pip.2693
  37. S. W. Shin, K. V. Gurav, C. W. Hong, J. Gwak, H.R. Choi, S. A. Vanalakar, J. H. Yun, J. Y. Lee, J.H. Moon and J. H. Kim, "Phase segregations andthickness of the $Mo(S,Se)_2$ layer in $Cu_2ZnSn(S,Se)_4$ solar cells at different sulfurizationtemperatures,"Solar Energy Materials and SolarCells, vol. 143, pp. 480-487, 2015. https://doi.org/10.1016/j.solmat.2015.07.023
  38. D. B. Khadka, S. Kim and J. Kim, "A NonvacuumApproach for Fabrication of $Cu_2ZnSnSe_4/In_2S_3$Thin Film Solar Cell and OptoelectronicCharacterization,"The Journal of Physical Chemistry C, vol. 119, no. 22, pp. 12226-12235, 2015. https://doi.org/10.1021/acs.jpcc.5b03193
  39. Y. Hwang, B.-I. Park, B.-S. Lee, J. Y. Kim, J.-H.Jeong, H. Kim, M. J. Ko, B. Kim, H. J. Son, S. Y.Lee, J.-S. Lee, J.-K. Park, S.-H. Cho and D.-K.Lee, "Influences of Extended Selenization on$Cu_2ZnSnS_4$ Solar Cells Prepared from QuaternaryNanocrystalInk," The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 27657-27663, 2014. https://doi.org/10.1021/jp508028t