DOI QR코드

DOI QR Code

Investigation of Splicing Quantitative Trait Loci in Arabidopsis thaliana

  • Yoo, Wonseok (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kyung, Sungkyu (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Han, Seonggyun (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Sangsoo (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2016.08.01
  • Accepted : 2016.10.16
  • Published : 2016.12.31

Abstract

The alteration of alternative splicing patterns has an effect on the quantification of functional proteins, leading to phenotype variation. The splicing quantitative trait locus (sQTL) is one of the main genetic elements affecting splicing patterns. Here, we report the results of genome-wide sQTLs across 141 strains of Arabidopsis thaliana with publicly available next generation sequencing datasets. As a result, we found 1,694 candidate sQTLs in Arabidopsis thaliana at a false discovery rate of 0.01. Furthermore, among the candidate sQTLs, we found 25 sQTLs that overlapped with the list of previously examined trait-associated single nucleotide polymorphisms (SNPs). In summary, this sQTL analysis provides new insight into genetic elements affecting alternative splicing patterns in Arabidopsis thaliana and the mechanism of previously reported trait-associated SNPs.

Keywords

References

  1. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science 1998;282:662, 679-682.
  2. Van Norman JM, Benfey PN. Arabidopsis thaliana as a model organism in systems biology. Wiley Interdiscip Rev Syst Biol Med 2009;1:372-379. https://doi.org/10.1002/wsbm.25
  3. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010;465:627-631. https://doi.org/10.1038/nature08800
  4. Ioannidis JP, Thomas G, Daly MJ. Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 2009;10:318-329. https://doi.org/10.1038/nrg2544
  5. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 2010;6: e1000888. https://doi.org/10.1371/journal.pgen.1000888
  6. West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, et al. Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 2007;175:1441-1450.
  7. Zhang X, Cal AJ, Borevitz JO. Genetic architecture of regulatory variation in Arabidopsis thaliana. Genome Res 2011;21: 725-733. https://doi.org/10.1101/gr.115337.110
  8. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007;8:749-761. https://doi.org/10.1038/nrg2164
  9. Han S, Jung H, Lee K, Kim H, Kim S. Genome wide discovery of genetic variants affecting alternative splicing patterns in human using bioinformatics method. Genes Genomics (in press).
  10. Weigel D, Mott R. The 1001 genomes project for Arabidopsis thaliana. Genome Biol 2009;10:107. https://doi.org/10.1186/gb-2009-10-5-107
  11. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, et al. Patterns of population epigenomic diversity. Nature 2013;495:193-198. https://doi.org/10.1038/nature11968
  12. David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 2011;27:1011-1012. https://doi.org/10.1093/bioinformatics/btr046
  13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  14. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28:511-515. https://doi.org/10.1038/nbt.1621
  15. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 2010;7:1009-1015. https://doi.org/10.1038/nmeth.1528
  16. Kallberg M, Margaryan G, Wang S, Ma J, Xu J. RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 2014;1137:17-27.

Cited by

  1. Construction of a High-Density Genetic Map from RNA-Seq Data for an Arabidopsis Bay-0 × Shahdara RIL Population vol.8, pp.1664-8021, 2017, https://doi.org/10.3389/fgene.2017.00201
  2. Identification of Splicing Quantitative Trait Loci (sQTL) in Drosophila melanogaster with Developmental Lead (Pb2+) Exposure vol.8, pp.1664-8021, 2017, https://doi.org/10.3389/fgene.2017.00145
  3. misMM: An Integrated Pipeline for Misassembly Detection Using Genotyping-by-Sequencing and Its Validation with BAC End Library Sequences and Gene Synteny vol.15, pp.4, 2017, https://doi.org/10.5808/GI.2017.15.4.128