DOI QR코드

DOI QR Code

Evaluation of the evaporation estimation approaches based on solar radiation

일사량에 기초한 증발량 산정방법들의 적용성 평가

  • 임창수 (경기대학교 공과대학 토목공학과)
  • Received : 2015.12.01
  • Accepted : 2015.12.29
  • Published : 2016.02.29

Abstract

In order to examine the applicability, the evaporation estimation approaches based on solar radiation are classified into 3 different model groups (Model groups A, B, and C) in this study. Each group is tested in the 6 study stations (Seoul, Daejeon, Jeonju, Busan, Mokpo, and Jeju). The model parameters of each model group are estimated and verified with measured pan evaporation data. The applicability of verified model groups are compared with results of Penman (1948) combination approach. Nash-Sutcliffe (N-S) efficiency coefficients greater than 0.663 in all study stations indicate satisfactory estimates of evaporation. On the other hand, in the model verification process, N-S efficiency coefficients greater than 0.526 in all study stations indicate also satisfactory estimates of evaporation. However, N-S efficiency coefficients in all study cases except Model groups B and C in Busan are less than those of Penman (1948) combination approach. Therefore, it is concluded in this study that the evaporation estimation approaches based on solar radiation have capability to replace Penman (1948) combination approach for the estimation of evaporation in case that some meteorological data (wind speed, relative humidity) are missing or not measured.

본 연구에서는 일사량에 기초한 증발량 산정방법의 적용성을 검토하기 위해 기존에 연구자들에 의해서 제안된 식들을 3가지 형태의 model group (Model groups A, B, and C)으로 분류하고, 이를 우리나라 6개 지역(서울, 대전, 전주, 부산, 목포, 제주)에 적용하였다. 증발접시 증발량 자료를 이용하여 이들 model group들의 매개변수를 추정하고, 검증하였다. 또한 Penman (1948) 조합식을 적용하여 이들 model group들과 비교하였다. 연구결과에 의하면 모든 지역에서 Nash-Sutcliffe (N-S) 효율지수가 0.663 이상을 보여서 만족스러운 증발량 산정결과를 보였다. 모형 검증과정에서 산정된 N-S 효율지수는 모든 연구지역에서 0.526이상을 보여서 역시 만족스러운 결과를 보였으나, 부산지역에서 적용된 Model groups B와 C를 제외하고는 모두 Penman (1948) 조합식보다 작은 N-S 효율지수를 보였다. 따라서 주요 기상자료 일부(풍속, 상대습도)가 부족하거나 측정되지 않는 경우에 증발량 산정을 위해서 Penman (1948) 조합식을 대체하여 일사량자료에 기초한 증발량 산정 방법이 적용될 수 있을 것으로 사료된다.

Keywords

References

  1. Abtew, W. (1996). "Evapotranspiration measurement and modeling for three wetland systems in South Florida." Water Resources Bulletin, Vol. 32, pp. 465-473. https://doi.org/10.1111/j.1752-1688.1996.tb04044.x
  2. Allen, R.G., Peretira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5.
  3. Blaney, H.F., and Criddle, W.D. (1950). Determining water requirements in irrigated areas from climatological and irrigation data. U.S. Dept. Agriculture, Soil Conserv. Service, Tech. Paper 96, p. 48.
  4. Brutsaert, W.H., and Stricker, H. (1979). "An advection-aridity approach to estimate actual regional evapotranspiration." Water Resources Research, Vo. 15, pp. 443-450. https://doi.org/10.1029/WR015i002p00443
  5. Dalton, J. (1802). "Experimental essays on the constitution of mixed gases: on the force of steam or vapour from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat." Manchester Lit. Phil. Soc. Mem. proc., Vol. 5, pp. 536-602.
  6. DeBruin, H.A.R. (1978). "A simple model for shallow lake evaporation." J. Appl. Meteorol., Vol. 17, pp. 1132-1134. https://doi.org/10.1175/1520-0450(1978)017<1132:ASMFSL>2.0.CO;2
  7. DeBruin, H.A.R., and Keijman, J.Q. (1979). "The Priestley-Yaylor evaporation model applied to a large, shallow lake in the Netherlands", J. Appl. Meteorol., Vol. 18, pp. 898-903. https://doi.org/10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
  8. Delclaux, F., Coudrain, A., and Condom, T. (2007). "Evaporation estimation on lake Titicaca: a synthesis review and modelling." Hydrological Processes, Vol. 21, pp. 1664-1677. https://doi.org/10.1002/hyp.6360
  9. Doorenbos, J., and Pruitt, W.O. (1977). Crop water requirements. Irrigation and Drainage Paper 24, Food and Agricultural Organization of the United Nations: Rome, Italy pp. 144.
  10. Gianniou, S.K., and Antonopoulos, V.Z. (2007). "Evaporation and energy budget in lake Vegoritis Greece." Journal of Hydrology, Vol. 345, pp. 212-223. https://doi.org/10.1016/j.jhydrol.2007.08.007
  11. Han, J.S., and Lee, B.Y. (2006). "Measurement and analysis of free water evaporation at HaeNam paddy field." Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No. 1, pp. 92-98.
  12. Hargreaves, G.H. (1975). "Moisture availability and crop production." Transactions of the ASAE, Vol. 18, pp. 980-984. https://doi.org/10.13031/2013.36722
  13. Hargreaves, G.H., and Samani, Z.A. (1982). "Estimating potential evapotranspiration." J. Irrig. and Drain Engr., ASCE, Vol. 108(IR3), pp. 223-230.
  14. Hargreaves, G.H., and Samni, Z.A. (1985). "Reference crop evapotranspiration from temperature." Transaction of ASCE, Vol. 1, No. 2, pp. 96-99.
  15. IPCC (2007). Climate Change 2007: the physical science basis. Working Group 1. Cambridge University Press: Cambridge.
  16. Jensen, M.E., and Haise, H.R. (1963). Estimation of evapotranspiration from solar radiation. Journal of Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers, Vol. 89, pp. 15-41.
  17. Jensen, M.E. (1973) Consumptive use of water and irrigation requirements. ASAE, New York.
  18. Jo, H.G. (1973). "On lake evaporation from climatological data in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 6, No. 1, pp. 5-12.
  19. Kohler, M.A., Nordenson, T.J., and Fox, W.E. (1955). Evaporation from pans and lakes. U.S. Dept. Commerce Research. Paper. No. 38.
  20. Kohler, M.A., and Richards, M.M. (1962). "Multicapacity basin accounting for predicting runoff from storm precipitation." Journal of Geophysical Research, Vol. 67, pp. 5187-5197. https://doi.org/10.1029/JZ067i013p05187
  21. Konstantinov, A.R. (1968). Evaporation in nature. Leningrad.
  22. Lagos, L.O. Martin, D.L., Verma, S.B., Irmak, S., Irmak, A., Eisenhauer, D., and Suyker, A. (2011). "Surface energy balance model of transpiration from variable canopy cover and evaporation from residue-covered or bare soil systems: model evaluation." Irrigation Science, DOI: 10.1007/s00271-011-0298-9.
  23. Lee, K.H., and Kim, M.I. (1985). "Seasonal variations of the evaporation in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 18, No. 3, pp. 243-251.
  24. Lenters, J.D., Kratz, T.K., and Bowser, C.J. (2005). "Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin(USA)." Journal of Hydrology, Vol. 308, pp. 268-195.
  25. Makkink, G.F. (1957). "Testing the Penman formula by means of lysimeters." Journal of the Institution of Water Engineers, Vol. 11, pp. 277-288.
  26. McGuinness, J.L. and Bordne, E.F. (1972). A comparison of Lysimeter-derived potential evapotranspiration with computed values. Technical Bulletin 1452, Agricultural Research Service, US Department of Agriculture: Washington, DC; pp. 71.
  27. Mkhwanazi, M., Chavez, J.L., and Rambikur, E.H. (2012). "Comparison of Large aperture scintillometer and satellitebased energy balance models in sensible heat flux and crop evapotranspiration determination." International Journal of Remote Sensing Applications. Vol. 12, pp. 24-30.
  28. Monteith, J.L. (1965). "Evaporation and environment." Symp. Soc. Exp. Biol., Vol. 19, pp. 205-234.
  29. Nash J.E., and Sutcliffe J.V. (1970) "River flow forecasting through conceptual models, 1. A discussion of principles." J. of Hydrology, Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  30. Papadakis, J. (1961). Climate tables for the world. Publ. by Author, Buenos Aires, p.175.
  31. Paul, G., Gowda, P.H., Prasad, V., Howell, T.A., and Staggenborg, S.A. "Evaluating surface energy balance system(SEBS) using aircraft data collected during BEAREX07." World Environmental and Water Resources Congress 2011: Bearing knowledge for sustainability, pp. 2777-2786.
  32. Penman, H.L. (1948). Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London, Vol. A193, pp. 120-146.
  33. Penman, H.L. (1956). "Evaporation. An introductory survey." Neth. J. Agric. Sci. Vol. 4, pp. 9-29.
  34. Preistley, C.H.B., and Taylor, R.J. (1972). "On the assessment of the surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, No. 2, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  35. Rohwer, C. (1931). Evaporation from free water surfaces. USDA Technical Bulletin No. 271.
  36. Shuttleworth, W.J. and Wallace, J.S. (1985). "Evaporation from sparse crops-an energy combination." Quarterly Journal of the Royal Meteorological Society, Vol. 111, pp. 839-855. https://doi.org/10.1002/qj.49711146910
  37. Stephens, J.C., and Stewart, E.H. (1963). A comparison of procedures for computing evaporation and evapotranspiration. Publication 62, International Association of Scientific Hydrology. International Union of Geodynamics and Geophysics, Berkeley, pp. 123-133.
  38. Thornthwaite, C.W. (1948). "An approach toward a rational classification of climate." Geog. Rev., Vol. 38, pp. 55-94. https://doi.org/10.2307/210739