Abstract
In this paper, we propose an improved single view metrology (SVM) algorithm to accurately measure the height of objects. In order to accurately measure the size of objects, vanishing points have to be correctly estimated. There are two methods to estimate vanishing points. First, the user has to choose some horizontal and vertical lines in real world. Then, the user finds the cross points of the lines. Second, the user can obtain the vanishing points by using software algorithm such as [6-9]. In the former method, the user has to choose the lines manually to obtain accurate vanishing points. On the other hand, the latter method uses software algorithm to automatically obtain vanishing points. In this paper, we apply image resizing and edge sharpening as a pre-processing to the algorithm in order to improve performance. The estimated vanishing points algorithm create four vanishing point candidates: two points are horizontal candidates and the other two points are vertical candidates. However, a common image has two horizontal vanishing points and one vertical vanishing point. Thus, we eliminate a vertical vanishing point candidate by analyzing the histogram of angle distribution of vanishing point candidates. Experimental results show that the proposed algorithm outperforms conventional methods, [6] and [7]. In addition, the algorithm obtains similar performance with manual method with less than 5% of the measurement error.