DOI QR코드

DOI QR Code

The Temperature-Dependent Development of the Parasitoid Fly, Exorista Japonica (Townsend) (Diptera: Tachinidae)

항온조건에서 긴등기생파리 [Exorista japonica (Townsend)] (Diptera: Tachinidae) 온도별 발육

  • Park, Chang-Gyu (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences) ;
  • Seo, Bo Yoon (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences) ;
  • Choi, Byeong-Ryoel (Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences)
  • 박창규 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 서보윤 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 최병렬 (국립농업과학원 농산물안전성부 작물보호과)
  • Received : 2016.09.11
  • Accepted : 2016.11.06
  • Published : 2016.12.01

Abstract

Exorista japonica is one of the major natural enemies of noctuid larvae, Mythimna separata and Spodoptera litura. The examined parasitoid was obtained from host species M. separata, collected at Gimje city and identified by DNA sequences (partial cytochrome oxidase I, 16S, 18S, and 28S). For purposed of this study, laboratory reared S. litura served as the host species for the development of the E. japonica. The developmental period of E. japonica immature stages were investigated at seven constant temperatures (16, 19, 22, 25, 28, 31, $34{\pm}1^{\circ}C$, RH 20~30%). Temperature-dependent developmental rates and development completion models were developed. E. japonica was successfully developed from egg to adult in $16{\sim}31^{\circ}C$ temperature regimes. Developmental duration was the shortest at $34^{\circ}C$ (8.3 days) and the longest at $16^{\circ}C$ (23.4 days) from egg to pupa development. Pupal development duration was the shortest at $28^{\circ}C$ (7.3 days). Total immature-stage development duration decreased with increasing temperature, and was the shortest at $31^{\circ}C$ (16.3 days) and the longest at $16^{\circ}C$ (45.4 days). The lower developmental threshold was $7.8^{\circ}C$ and thermal constant required to complete total immature-stage development was 370.4 degree days. Among four non-linear temperature-dependent developmental rate models, Briere 1 model had the highest adjusted R-squared (0.96). The distribution model of development completion for total immature stage development of E. japonica was well described by all model ($r^2_{adj}=0.90$) based on the standardized development duration. These results of study would be necessary not only to develop population dynamics model but also to understand fundamental biology of E. japonica.

야외에서 채집된 멸강나방(Mythimna separata) 유충 및 번데기로부터 우화한 기생파리를 NCBI 데이터베이스에 등록되어 있는 유전자 염기서열 정보(16S, 18S, 28S 그리고 CO I)와 비교하여 긴등기생파리(Exorista japonica)로 동정하였다. 긴등기생파리의 알부터 성충우화까지 발육 기간을 담배거세미나방(Spodoptera litura) 5~6령 유충을 숙주 곤충으로 하여 7개 항온조건(16, 19, 22, 25, 28, 31, $34{\pm}1^{\circ}C$)에서 조사하였고 온도에 따른 발육율과 발육완료 모델들의 매개변수들을 추정하였다. $34^{\circ}C$를 제외한 다른 항온 조건에서 알부터 성충우화까지 발육이 가능하였다. 알부터 번데기까지 발육 기간을 보면 $16^{\circ}C$(23.4일)에서 가장 길었고 $34^{\circ}C$(8.3일)에서 가장 짧았으나, 번데기부터 성충까지 발육기간은 $28^{\circ}C$(7.3일)에서 가장 짧았다. 알부터 성충우화까지 전체 발육 기간은 $31^{\circ}C$에서 16.3일로 가장 짧았고 $16^{\circ}C$에서 45.4일로 가장 길었으며 온도가 상승함에 따라 발육기간은 짧아졌다. 선형 발육율 모델을 이용하여 추정한 알부터 성충우화까지 발육영점온도와 유효적산온도는 각각 $7.8^{\circ}C$, 370.4DD 였다. 4개 비선형 발육율 모델(Briere 1, Lactin 2, Logan 6, Performance) 중에서는 Briere 1 모델($r^2_{adj}=0.96$)이 가장 높은 해석력을 보여주었다. 동일 연령 집단의 발육완료 분포를 설명하기 위해 사용된 3개 모델(2-parameter Weibull, 3-parameter-Weibull, Sigmoid)은 모두 같은 결정력($r^2_{adj}=0.90$)을 보였다.

Keywords

References

  1. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  2. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Markauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  3. Crosskey, R.W., 1976. A taxonomic conspectus of the Tachinidae (Diptera) of the Oriental region. Bull. Br. Mus. (Nat. Hist.) Entomol. Suppl. No. 26: 1-357.
  4. Curry, G.L., Feldman, R.M., Sharpe, P.J.H., 1978. Foundations of stochastic development. J. Theor. Biol. 74, 397-410. https://doi.org/10.1016/0022-5193(78)90222-9
  5. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-299.
  6. Ichiki, R.T., Kainoh, Y., Kugimiya, S., Takabayashi, J., Nakamura, S., 2008. Attraction to herbivore-induced plant volatiles by the host-foraging parasitoid fly Exorista japonica. J. Chem. Ecol. 34, 614-621. https://doi.org/10.1007/s10886-008-9459-6
  7. Ichiki, R.T., Kainoh, Y., Yamawaki, Y., Nakamura, S., 2011. The parasitoid fly Exorista japonica uses visual and olfactory cues to locate herbivore-infested plants. Entomol. Exp. Appl. 138, 175-183. https://doi.org/10.1111/j.1570-7458.2010.01091.x
  8. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  9. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  10. Nakamura, S., 1994. Parasitization and life history parameters of Exorista japonica (Diptera: Tachinidae) using the common armyworm, Pseudaletia separata (Lepidoptera: Noctuidae) as a host. Appl. Entomol. Zool. 29, 133-140. https://doi.org/10.1303/aez.29.133
  11. Nakamura, S., 1997. Ovipositional behaviour of the parasitoid fly, Exorista japonica (Diptera: Tachinidae), in the laboratory: diel periodicity and egg distribution on a host. Appl. Entomol. Zool. 32, 189-195. https://doi.org/10.1303/aez.32.189
  12. Neter, J., Wasserman, W., 1974. Applied linear statistical models. regression, analysis of variance, and experimental designs. Ed. R. D. Irwin, Illinois.
  13. Seo, B.Y., Jung, J.K., Park, K.J., Cho, J.R., Lee, G.S., Jung, C.R., 2014. Molecular identification of Trichogramma (Hymenoptera: Trichogrammatidae) egg parasitoids of the asian corn borer Ostrinia furnacalis, based on ITS2 rDNA sequence analysis. Korean J. Appl. Entomol. 53, 247-260. https://doi.org/10.5656/KSAE.2014.06.0.012
  14. Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., Cole, C.L., 1977. Distribution model of organism development times. J. Theor. Biol. 66, 21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  15. Shi, P., Ge, F., Sun, Y., Chen, C., 2011. A simple model for describing the effect of temperature on insect developmental rate. J. Asia-Pac. Entomol. 14, 15-20. https://doi.org/10.1016/j.aspen.2010.11.008
  16. Shima, H., 2006. A host-parasite catalog of Tachinidae (Diptera) of Japan. Makunagi/Acta Dipterologica, Supplement 2, 1-171.
  17. SYSTAT software inc., 2002. TableCurve 2D Automated curve fitting analysis: version 5.01, Systat software. inc. San Jose, CA.
  18. Takahashi, A., Sawaki, T., 1969. The parasitic state of Exorista japonica on the common cutworm, Spodoptera litura, larvae. Proc. Kansai Pl. Prot. Soc. 11, 82-83.
  19. Tachi, T., Shima, H., 2010. Molecular phylogeny of the subfamily Exoristinae (Diptera: Tachinidae), with discussions on the evolutionary history of female oviposition strategy. Syst. Entomol. 35, 148-163. https://doi.org/10.1111/j.1365-3113.2009.00497.x
  20. Tanaka, C., Kainoh, Y., Honda, H., 1999. Physical factors in host selection of the parasitoid fly, Exorista japonica Townsend (Diptera: Tachinidae). Appl. Entomol. Zool. 34, 91-97. https://doi.org/10.1303/aez.34.91
  21. Tanaka, C., Kainoh, Y., Honda, H., 2001. Host frass as arrestant chemicals in locating host Mythimna separata by the tachinid fly Exorista japonica. Entomol. Exp. Appl. 100, 173-178. https://doi.org/10.1046/j.1570-7458.2001.00861.x
  22. The Entomological Society of Korea and Korean Society of Applied Entomology. 1994. Check list of insects from Korea, Kon-Kuk University Press, Seoul.
  23. Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling distribution of insect development time: a literature review an application of Weibull function. Ann. Entomol. Soc. Am. 77, 475-483. https://doi.org/10.1093/aesa/77.5.475
  24. Wang, L., Shi, P., Chen, C., Xue, F., 2013. Effect of temperature on the development of Laodelphax striatellus (Homoptera: Delphacidae). J. Econ. Entomol. 106, 107-114. https://doi.org/10.1603/EC12364
  25. Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S., Zalucki, M.P., 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environ. Entomol. 39, 177-189. https://doi.org/10.1603/EN08239