DOI QR코드

DOI QR Code

Establishment of Chlorantraniliprole-Resistant Drosophila Strains and Identification of Their Resistant Characteristics

Chlorantraniliprole 저항성 초파리 계통 확립과 저항성 특성 구명

  • Kim, A-Young (Ilsong Institute of Life Science, Hallym University) ;
  • Kwon, Deok Ho (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Jeong, In Hong (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Thuc, Ahn Phan (Ilsong Institute of Life Science, Hallym University) ;
  • Tran, Vi Ngan (Ilsong Institute of Life Science, Hallym University) ;
  • Lee, Si Hyeock (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Koh, Young Ho (Ilsong Institute of Life Science, Hallym University)
  • 김아영 (한림대학교 일송생명과학연구소) ;
  • 권덕호 (서울대학교 농생명공학연구소) ;
  • 정인홍 (국립농업과학원 작물보호부) ;
  • 특안판 (한림대학교 일송생명과학연구소) ;
  • 트란비느안 (한림대학교 일송생명과학연구소) ;
  • 이시혁 (서울대학교 농생명공학연구소) ;
  • 고영호 (한림대학교 일송생명과학연구소)
  • Received : 2016.10.05
  • Accepted : 2016.11.02
  • Published : 2016.12.01

Abstract

Ryanodine receptors (RyRs) regulate the contractions of insect muscles by altering intracellular $Ca^{2+}$ concentration and are the targets of chlorantraniliprole. Recently, a chlorantraniliprole-resistant strain was reported in the diamondback moth Plutella xylostella by obtaining point mutations on the RyRs. In the present study, we established two resistant strains from Drosophila melanogaster, which were treated with low or high concentrations of chlorantraniliprole, and their resistance levels were determined on the basis of contact and ingestion toxicities. Compared with the control strain, the two resistant strains did not show any significant differences in contact toxicity. However, they showed significantly increased resistance ratios in ingestion toxicity than that by the control strain. The low and high concentration resistant strains exhibited 2.1- and 8.1-fold increased resistance ratios, respectively, compared with that by the control strain. Moreover, we found that the resistant strains had altered expression levels of RyRs and more enhanced Acetylcholinesterase and Glutathione-S-transferase activities than that by the non-selected strain. These results suggested that the resistance development of chlorantraniliprole in the two strains might be mediated by the activation of detoxification pathways in D. melanogaster.

Chlorantraniliprole은 곤충 근육의 $Ca^{2+}$ 농도를 조절하는 Ryanodine 수용기(RyR)에 작용 하는 diamide계통의 작물보호제이다. 최근에 보고된 chlorantraniliprole 저항성 배추좀나방 계통은 RyR에 돌연변이를 가지고 있다. 본 연구에서는 초파리를 모델 곤충으로 저농도와 고농도의 chlorantraniliprole로 도태된 두 종류의 저항성 계통을 확보하였다. 두 종류의 저항성 계통은 접촉독성과 섭식독성 평가법을 활용하여 저항성 지수를 산출하였다. 접촉 독성 평가에서 두 종류의 저항성 계통은 대조군과 비교하여 95% 신뢰구간에서 저항성 발달에 차이가 없었지만, 섭식 독성 평가의 경우에서는 고농도 저항성 계통과 저농도 저항성 계통에서 대조군 대비 각각 2.1배와 8.1배의 통계적으로 유의한 저항성 증가가 나타났다. 작용점 유전자인 RyR 발현량 비교 결과, 두 종류의 저항성 계통에서 RyR의 발현량이 유의하게 감소하였고, 주요 약제 관련 효소인 Acetylcholinesterase와 Glutathione-S-transferase 활성은 조직 특이적으로 증가하는 것을 확인하였다. 이러한 결과들은 초파리에서 chlorantraniliprole에 대한 섭식독성 저항성의 발달에는 주요 해독 관련 효소의 과활성도 관여할 것 임을 보여주고 있다.

Keywords

References

  1. Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267.
  2. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J. D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., George, R.A., Lewis, S.E., Richards, S., Ashburner, M., Henderson, S.N., Sutton, G.G., Wortman, J.R., Yandell, M.D., Zhang, Q., Chen, L.X., Brandon, R.C., Rogers, Y.H., Blazej, R.G., Champe, M., Pfeiffer, B.D., Wan, K.H., Doyle, C., Baxter, E.G., Helt, G., Nelson, C.R., Gabor, G.L., Abril, J.F., Agbayani, A., An, H.J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R.M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E.M., Beeson, K.Y., Benos, P.V., Berman, B.P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M.R., Bouck, J., Brokstein, P., Brottier, P., Burtis, K.C., Busam, D.A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J.M., Cawley, S., Dahlke, C., Davenport, L.B., Davies, P., de Pablos, B., Delcher, A., Deng, Z., Mays, A.D., Dew, I., Dietz, S.M., Dodson, K., Doup, L.E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, P., Durbin, K.J., Evangelista, C.C., Ferraz, C., Ferriera, S., Fleischmann, W., Fosler, C., Gabrielian, A.E., Garg, N.S., Gelbart, W.M., Glasser, K., Glodek, A., Gong, F., Gorrell, J.H., Gu, Z., Guan, P., Harris, M., Harris, N.L., Harvey, D., Heiman, T.J., Hernandez, J.R., Houck, J., Hostin, D., Houston, K.A., Howland, T.J., Wei, M.H., Ibegwam, C., Jalali, M., Kalush, F., Karpen, G.H., Ke, Z., Kennison, J.A., Ketchum, K.A., Kimmel, B.E., Kodira, C.D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, P., Lei, Y., Levitsky, A.A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, T.C., McLeod, M.P., McPherson, D., Merkulov, G., Milshina, N.V., Mobarry, C., Morris, J., Moshrefi, A., Mount, S.M., Moy, M., Murphy, B., Murphy, L., Muzny, D.M., Nelson, D.L., Nelson, D.R., Nelson, K.A., Nixon, K., Nusskern, D.R., Pacleb, J.M., Palazzolo, M., Pittman, G.S., Pan, S., Pollard, J., Puri, V., Reese, M.G., Reinert, K., Remington, K., Saunders, R. D., Scheeler, F., Shen, H., Shue, B.C., Siden-Kiamos, I., Simpson, M., Skupski, M.P., Smith, T., Spier, E., Spradling, A.C., Stapleton, M., Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A.H., Wang, X., Wang, Z.Y., Wassarman, D. A., Weinstock, G.M., Weissenbach, J., Williams, S.M., Woodage, T., Worley, K.C., Wu, D., Yang, S., Yao, Q.A., Ye, J., Yeh, R. F., Zaveri, J.S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X.H., Zhong, F.N., Zhong, W., Zhou, X., Zhu, S., Zhu, X., Smith, H.O., Gibbs, R.A., Myers, E.W., Rubin, G.M., Venter, J.C., 2000. The Genome Sequence of Drosophila melanogaster. Science 87, 2185-2195.
  3. Aktar, W., Sengupta, D., Chowdhury, A., 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicology 2, 1-12. https://doi.org/10.2478/v10102-009-0001-7
  4. Finney, D. J., 1971. Probit analysis, 3rd ed., Cambridge University Press, New York.
  5. Han, S.-B., Kim, J.-H., 2012. Research trend on secure tools to manage pesticide resistance. The Korean J. Pesticide Science 16, 409-417. https://doi.org/10.7585/kjps.2012.16.4.409
  6. Harris, C.R., Bowman, B.T. 1981. The relationship of insecticide solubility in water to toxicity in soil. J. Econ. Entomol. 74, 210-212. https://doi.org/10.1093/jee/74.2.210
  7. Kamel, F., Hoppin, J.A., 2004. Association of pesticide exposure with neurologic dysfunction and disease. Environ. Health Perspect. 112, 950-958. https://doi.org/10.1289/ehp.7135
  8. Kang, J.S., Lee, D.W., Koh, Y.H., Lee, S.H., 2011. A soluble acetylcholinesterase provides chemical defense against xenobiotics in the pinewood nematode. PLoS ONE 6, e19063. https://doi.org/10.1371/journal.pone.0019063
  9. Kathryn, M.O., Mark, N., 2008. From resilience to resistance: political ecological lessons from antibiotic and pesticide resistance. Ann. Rev. Anthropol. 37, 267-282. https://doi.org/10.1146/annurev.anthro.37.081407.085205
  10. Kim, A.Y., Seo, J.B., Kim, W. Choi, H.J., Kim, S.Y., Morrow G., Tanguay, R.M., Steller, H., Koh, Y.H., 2015. The pathogenic Human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress. BMC Genomics 16, 338 https://doi.org/10.1186/s12864-015-1518-0
  11. Kim, W., Lee, D., Choi, J., Kim, A., Han, S., Park, K., Choi, J., Kim, J., Choi, Y., Lee, S.H., Koh, Y.H., 2011. Pharmacogenetic regulation of acetylcholinesterase activity in drosophila reveals the regulatory mechanisms of ache inhibitors in synaptic plasticity. Neurochem. Res. 36, 879-893. https://doi.org/10.1007/s11064-011-0418-1
  12. Kim, W.T., Choi, H.J., Park, Y., Kim, A.-y., Kim, Y.H., Seo, J., Lee, S.H., Koh, Y.H., 2010. Alterations in both acetylcholinesterase activity and synaptic scaffolding protein localization in the nervous system of Drosophila presenilin mutants. J. Asia-Pac. Entomol. 13, 339-343. https://doi.org/10.1016/j.aspen.2010.05.006
  13. Lin, Q., Jin, F., Hu, Z., Chen, H., Yin, F., Li, Z., Dong, X., Zhang, D., Ren, S., and Feng, X., 2013. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS One 8, e72314. https://doi.org/10.1371/journal.pone.0072314
  14. Nguyen, P., Kim, A.Y., Jung, J.K., Donahue, K.M., Jung, C., Choi, M.Y., Koh, Y.H., 2016. The biochemical adaptations of spotted wing drosophila (Diptera: Drosophilidae) to fresh fruits reduced fructose concentrations and glutathione-s transferase activities. J. Econ. Entomol. 109, 973-981. https://doi.org/10.1093/jee/tow019
  15. Pimentel, D., 2005. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 7, 229-252. https://doi.org/10.1007/s10668-005-7314-2
  16. Poet, T.S., Kousba, A.A., Dennison, S.L., Timchalk, C., 2004. Physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus pesticide diazinon. Neurotoxicology 25, 1013-1030. https://doi.org/10.1016/j.neuro.2004.03.002
  17. Wijdeven, R.H., Pang, B., Assaraf, Y.G., Neefjes, J., 2016. Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updates 28, 65-81. https://doi.org/10.1016/j.drup.2016.07.001

Cited by

  1. strains and their cross-resistance to other insecticides vol.99, pp.4, 2018, https://doi.org/10.1002/arch.21514
  2. using loop-mediated isothermal amplification pp.07394462, 2018, https://doi.org/10.1002/arch.21504