DOI QR코드

DOI QR Code

식물 및 미생물 유래 유기농자재 살충효과: 단감해충 감꼭지나방, 톱다리개미허리노린재

Eco-Friendly Organic Pesticides (EFOP)-Mediated Management of Persimmon Pests, Stathmopoda masinissa and Riptortus pedestris

  • 김종철 (전북대학교 농업생명과학대학 농생물학과) ;
  • 유정선 (전북대학교 농업생명과학대학 농생물학과) ;
  • 송민호 (전북대학교 농업생명과학대학 농생물학과) ;
  • 이미롱 (전북대학교 농업생명과학대학 농생물학과) ;
  • 김시현 (전북대학교 농업생명과학대학 농생물학과) ;
  • 이세진 (전북대학교 농업생명과학대학 농생물학과) ;
  • 김재수 (전북대학교 농업생명과학대학 농생물학과)
  • Kim, Jong Cheol (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Yu, Jeong Seon (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Song, Min Ho (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Lee, Mi Rong (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Kim, Sihyeon (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Lee, Se Jin (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Kim, Jae Su (Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University)
  • 투고 : 2016.03.03
  • 심사 : 2016.09.17
  • 발행 : 2016.12.01

초록

단감 해충의 효과적인 방제를 위하여, 현재까지 주로 화학 살충제가 사용되어 왔으나, 최근 화학 살충제의 과다 사용은 해충 저항성과 농약 잔류 문제라는 심각한 문제를 야기하고 있다. 본 연구에서는 친환경 유기농자재 (Eco-Friendly Organic Pesticides; EFOP)의 주요 단감 해충인 감꼭지나방과 톱다리개미허리노린재에 대한 살충 활성을 검토하였다. 현재 유통되고 있는 친환경 유기농자재 11 종을 실험실 조건에서 대상 해충에 분무 처리하였다. 대조 약제는 화학 살충제인 buprofezin+dinotefuran (20+15) 수화제를 사용하였다. 감꼭지나방에 대한 유기농자재의 살충 효과를 평가하는 과정에서, 감꼭지나방 유충의 개체수 부족 문제로 인하여 배추좀나방 유충을 1차 실험충으로 사용하였으며, 세 종류의 친환경 유기농자재를 사전 선발하였다. 선발된 친환경 유기농자재는 목초액 (EFOP-1), 회화나무, 양명아주, 멀구슬나무의 혼합추출물 (EFOP-2), Bacillus thuringiensis subsp. aizawai NT0423 (EFOP-11)이었으며, 선발된 유기농자재의 감꼭지나방 유충에 대한 살충력 실험 결과, EFOP-2의 처리구에서 생충율이 27.7% (5 일차), 13.3% (7 일차), 6.7% (10 일차)로 가장 높은 살충 효과를 보였다. 톱다리개미허리노린재에 대한 살충 효과 평가에서는 회화나무, 양명아주, 멀구슬나무의 혼합추출물 (EFOP-2, EFOP-9)과 고삼, 데리스의 혼합추출물 (EFOP-10)이 높은 살충 효과를 보였다. 특히 EFOP-2의 처리구에서 생충율이 20.0% (5 일차), 16.7% (10 일차)로 가장 높은 살충 효과를 보였다. 결론적으로, 친환경 유기농자재인 EFOP-2를 이용하여 단감의 주요 해충인 감꼭지나방과 톱다리개미허리노린재를 포함한 다양한 노린재 해충에 대한 방제가 가능할 것으로 판단된다.

Chemical pesticides have been used to control persimmon pests, however the overuse of the pesticides caused insect resistance, followed by failure in pest management and residual problems. Herein we investigate the potential of eco-friendly organic pesticides (EFOP) on the control persimmon pests, Stathmopoda masinissa (persimmon fruit moth) and Riptortus pedestris (bean bug). Ten commercially available plant-derived organic pesticides and one microbial pesticide were sprayed on the target insects in laboratory conditions. The chemical pesticide, buprofezin+dinotefuran wettable powder served as a positive control. In the first bioassay against persimmon fruit moth, alternatively Plutella xylostella larvae were used due to the lack of persimmon fruit moth population from fields, and three organic pesticides showed high control efficacy, such as pyroligneous liquor (EFOP-1), the mixture of Chinese scholar tree extract, goosefoot and subtripinnata extracts (EFOP-2) and Bacillus thuringiensis subsp. aizawai NT0423 (EFOP-11). When the three selected organic pesticides were treated on the persimmon fruit moths, the EFOP-2 treatment showed the highest control efficacy: 27.7% (5 days), 13.3% (7 days) and 6.7% (10 days) of survival rates. In the bioassay against bean bugs, the mixture of Chinese scholar tree, goosefoot and subtripinnata extracts (EFOP-2 and EFOP-9) and the extracts of sophora and derris (EFOP-10) showed high control efficacy, particularly the highest in the treatment of EFOP-2: 20.0% (5 days) and 16.7% (10 days) of survival rates. These results suggest that the mixture of Chinese scholar tree, goosefoot and subtripinnata extracts (EFOP-2) has high and multiple potential in the management of the persimmon pests.

키워드

참고문헌

  1. Abrol, D.P., Andotra, R.S., 2001. Field toxicity of pesticides to honeybee, Apis mellifera L. Foragers. Korean J. Apic. 16, 19-26.
  2. Bae, S.D., 1997. Comparison in damaged aspect of wild persimmon fruit by second generation larva of persimmon fruit moth, Stathmopoda masinissa Meyrick. RDA. J. Crop. Prot. 39, 57-60
  3. Banken, J.A.O., Stark, J.D., 1997. Stage and age influence on the susceptibility of Coccinella septempunctata (Coleoptera: Coccinellidae) after direct exposure to meemix, a neem inseciticide. J. Econ. Entomol. 90, 1102-1105. https://doi.org/10.1093/jee/90.5.1102
  4. Chiasson, H., Vincent, C., Bostanian, N.J., 2004. Insecticidal properties of a Chenopodium-based botanical. J. Econ. Entomol. 97, 1378-1383. https://doi.org/10.1093/jee/97.4.1378
  5. Choi, D.S., Kim, D.I., Ko, S.J., Kang, B.R., Lee, K.S., Park, J.D., Choi, K.J., 2012, Occurrence ecology of Ricania sp. (Hemiptera: Ricaniidae) and selection of environmental friendly agricultural materials for control. Kor. J. Appl. Entomol. 51(2), 141-148. https://doi.org/10.5656/KSAE.2012.04.0.21
  6. Faria, M., Wraight, S.P., 2001. Biological control of Bemisia tabaci with fungi. Crop Protect. 20, 767-778. https://doi.org/10.1016/S0261-2194(01)00110-7
  7. Forestry Research Institute, 1995. A list of insect pests of trees and shrubs in Korea. Forestry Research Institute, Seoul.
  8. Hofte, H., Whiteley, H.R., 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255.
  9. Hwang, I.C., Kim, J., Kim, H.M., Kim, D.I., Kim, S.G., Kim, S.S., Jang, C., 2009. Evaluation of toxicity of plant extract made by neem and matrine against main pests and natural enemies. Korean J. Appl. Entomol. 48, 87-94. https://doi.org/10.5656/KSAE.2009.48.1.087
  10. Ishaaya, I., Blumberg, D., Yarom I., 1989. Buprofezin - a novel IGR for controlling whitefies and scale insects. Med. Fac. Landbouww. Rijksuniv. Gent. 54, 1003-1008.
  11. Jeon, H.Y., Kim, H.H., 2006. Damage and seasonal occurrence of major insect pests by cropping period in environmentally friendly lettuce greenhouse. Korean J. Appl. Entomol. 45, 275-282.
  12. Kim, I.S., Kim, I.S., 2009. Status and future prospects of pest control agents in environmentally-friendly agriculture, and importance of their commercialization. Korean J. Environ. Agric. 28, 301-309. https://doi.org/10.5338/KJEA.2009.28.3.301
  13. Kim, Y.H., Na, Y.E., Kim, M.J., Choi, B.R., Jo, H.C., Kim, S.I., 2015. Evaluation of insecticidal and antifeeding activities of eco-friendly organic insecticides against agricultural insect pests. Korean J. Appl. Entomol. 54(2), 99-109. https://doi.org/10.5656/KSAE.2015.05.0.020
  14. Lee, D.H., Kang, E.J., Kang, M.K., Lee, H.J., Seok, H.B., Seo, M.J., Yu, Y.M., Youn, Y.N., 2008. Effects of environment friendly agricultural materials to insect natural enemies at small green houses. Kor. J. Appl. Entomol. 47(1), 75-86. https://doi.org/10.5656/KSAE.2008.47.1.075
  15. Lee, D.W., Choi, H.C., Kim, T.S., Park, J.K., Park, J.C., Yu, H.B., Lee, S.M., Choo, H.Y., 2009. Effect of some herbal extracts on entomopathogenic nematodes, silkworm and ground beetles. Korean J. Appl. Entomol. 48(3), 335-345. https://doi.org/10.5656/KSAE.2009.48.3.335
  16. Lee, K.C., Kang, C.H., Lee, D.W., Lee, S.M., Park, C.G., Choo, H.Y., 2002. Seasonal occurrence trends of hemipteran bug pests monitored by mercury light and aggregation pheromone traps in sweet persimmon orchards. Korean J. Appl. Entomol. 41: 233-238.
  17. Lee, S.C., 2012. Sweet persimmon science and health. Cheongwoon Publishing Co, Jinju, Gyeongnam.
  18. Lu, M., Wu, W., Liu, H., 2013. Insecticidal and feeding deterrent effects of fraxinellone from Dictamnus dasycarpus against four major pests. Mol. 18, 2754-2762. https://doi.org/10.3390/molecules18032754
  19. MAFRA (Ministry of agriculture, food and rural affairs), 2015. The certificated amount of eco-friendly agricultural products. (in Korean) www.mafra.go.kr
  20. Park, E.C., 2002. Ecological Characteristics of the Persimmon Fruit Moth, Stathomopoda masinissa Meyrick (Lepidoptera; Stathmopodidae), a Major Insect Pest of Diospyros kaki. Unpublished master's thesis, Chongbuk National University, Cheongju.
  21. Park, J.G., Lim, T.H., Choi, Y.H., Jung, Y.H., Park, C.G., Choo, H.Y., Lee, D.W., 2009. Occurrence and damage of Japanese gall-forming thrips, Ponticulothrips diospyrosi Haga et Okajima (Thysanoptera: Thripidae) in persimmon orchards. Korean J. Appl. Entomol. 48, 431-437. https://doi.org/10.5656/KSAE.2009.48.4.431
  22. Park, Y.H., Choi, K.M., Lee, Y.I., Lee, M.H., Han, S.C., Ahn, S.B., Park, C.S., Lee, S.W., 1988. Ecology and control of fruit tree insect pests with colour plates. Agricultural Sciences Institute, Suwon, Korea.
  23. Scott, I.M., Jensen, H., Scott, J.G., Isman, M.B., Arnason, J.T., Philogene, B.J., 2003. Botanical insecticides for controlling agricultural pests: piperamides and the Colorado Potato Beetle Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 54, 212-225. https://doi.org/10.1002/arch.10118
  24. Sivasubramanian, A., Gadepalli, N.K., Rathnasamy, R., Campos, A.M., 2013. A new antifeedant clerodane diterpenoid from Tinospora cordifolia. Nat. Prod. Res. 27, 1431-1436. https://doi.org/10.1080/14786419.2012.722088
  25. SPSS Institute, 2003. SPSS version 12.0. SPSS Inc. chicago, IL., U.S.A.
  26. Yamada, E., Kodaka, K., Kinoshita, K., Wakita, T., Kawahara, N., Yasui N., 1999. Synthesis and activity of novel insect control compound MTI-446 and its derivatives, Annual Meeting of Pesticide Science Society of Japan (Abstracts), pp. 86.