DOI QR코드

DOI QR Code

Numerical Analysis on Wave Characteristics around Submerged Breakwater in Wave and Current Coexisting Field by OLAFOAM

파-흐름 공존장내 잠제 주변에서 OLAFOAM에 의한 파랑특성의 수치해석

  • Lee, Kwang-Ho (Dept. of Energy and Plant Eng., Catholic Kwandong University) ;
  • Bae, Ju-Hyun (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • An, Sung-Wook (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Bae, Kee Seung (Dept. of Civil Eng., Gyeongsang University)
  • 이광호 (가톨릭관동대학교 에너지플랜트공학과) ;
  • 배주현 (한국해양대학교 대학원 토목환경공학과) ;
  • 안성욱 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 배기성 (경상대학교 해양토목공학과)
  • Received : 2016.11.14
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

OLAFOAM is the powerful CFD code and is an expanded version of $OpenFOAM^{(R)}$, for wave mechanics simulation. The $OpenFOAM^{(R)}$ does provide many solvers to correspond to each object of the numerical calculation in a variety of fields. OLAFOAM's governing equation bases on VARANS (Volume-Averaged Reynolds-Averaged Navier-Stokes) equation, and the finite volume method is applied to numerical techniques. The program is coded in C++ and run on the Linux operating system. First of all, in this study, OLAFOAM was validated for 1) wave transformation inside porous structure under bore and regular wave conditions, 2) wave transformation by submerged breakwater under regular wave condition, and 3) regular wave transformation and resultant vertical velocity distribution under current by comparison with existing laboratory measurements. Hereafter, this study, which is almost no examination carried out until now, analyzed closely variation characteristics of water surface level, wave height, frequency spectrum, breaking waves, averaged velocity and turbulent kinetic energy around porous submerged breakwater in the wave and current coexisting field for the case of permeable or impermeable rear beach. It was revealed that the wave height fluctuation according to current direction(following or opposing) was closely related to the turbulent kinetic energy, and others.

OLAFOAM은 파동역학의 시뮬레이션을 위하여 $OpenFOAM^{(R)}$을 확장한 강력한 CFD코드이며, $OpenFOAM^{(R)}$은 다양한 분야에서 각각 수치계산의 목적에 대응할 수 있도록 많은 Solver를 제공하고 있다. OLAFOAM의 기본방정식은 VARANS식에 기초하고, 수치기법으로는 유한체적법을 적용하며, 프로그램은 C++로 코딩되어 Linux운영체제에서 실행된다. 본 연구는 OLAFOAM을 이용하여 먼저 1) 단파와 규칙파하 투과성구조물에서 파의 변형, 2) 규칙파하 잠제에 의한 파의 변형 및 3) 흐름하 규칙파의 변형과 연직유속분포에 대해 기존의 각 실험결과와 비교 검토하여 OLAFOAM의 타당성을 검증하였다. 이로부터 지금까지 거의 검토되지 않은 규칙파와 흐름의 공존장에 설치된 투과성잠제에 대해 배후경사면을 불투과성 혹은 투과성으로 고려한 경우 흐름방향 등의 변화에 따른 잠제 주변에서 수위, 파고, 주파수스펙트럼, 쇄파, 평균유속 및 난류운동에너지 등의 변동특성을 면밀히 검토하였다. 결과로부터 흐름방향(순방향과 역방향)에 따른 파고변화는 난류운동에너지와 밀접한 관계를 가지는 것 등을 알 수 있었다.

Keywords

References

  1. Baddour, R. E. and Song, S. (1990). On the interaction between waves and currents, Ocean Engineering, 17(1), 1-21. https://doi.org/10.1016/0029-8018(90)90011-T
  2. Brevik, I. (1980). Flume experiment on waves and current smooth bed, Coastal Engineering, 4, 149-177.
  3. Chen, L. F., Zang, J., Hillis, A. J., Morgan, G. C. J. and Plummer, A. R. (2014). Numerical investigation of wave-structure interaction using OpenFOAM, Ocean Engineering, 88, 91-109. https://doi.org/10.1016/j.oceaneng.2014.06.003
  4. Christensen, E. D., Zanuttigh, B. and Zysermanl, J. A. (2003). Validation of numerical models against laboratory measurements of waves and currents around low-crested structures, Proceedings of Coastal Structures.
  5. Del Jesus, M. (2011). Three-dimensional interaction of water waves with maritime structures, University of Cantabria, Ph.D. thesis.
  6. Engelund, F. (1953). On the laminar and turbulent flow of ground water through homogeneous sand, Transactions of the Danish Academy of Technical Sciences 3.
  7. Fredsoe, J., Andersen, K. H. and Sumer, B. M. (1999). Wave plus current over a ripple-covered bed, Coastal Engineering, 38(4), 177-221. https://doi.org/10.1016/S0378-3839(99)00047-2
  8. Ghosal, S., Lund, T., Moin, P. and Akselvoll, K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows, Journal of Fluid Mechanics, 286, 229-255. https://doi.org/10.1017/S0022112095000711
  9. Grant, W. D. and Madsen, O. S. (1979). Combined wave and current interaction with a rough bottom, Journal of Geophysical Research: Oceans, 84(C4), 1797-1808. https://doi.org/10.1029/JC084iC04p01797
  10. Groeneweg, J. and Klopman, G. (1998). Changes of the mean velocity profiles in the combined wave-current motion described in a GLM formulation, Journal of Fluid Mechanics, 370, 271-296. https://doi.org/10.1017/S0022112098002018
  11. Higuera, P., Lara, J. L. and Losada, I. J. (2013). Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM$^{(R)}$, Coastal Engineering, 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  12. Higuera, P., Lara, J. L. and Losada, I. J. (2014). Three-dimensional interaction of waves and porous coastal structures using Open-FOAM$^{(R)}$. Part I: formulation and validation, Coastal Engineering, 83, 243-258. https://doi.org/10.1016/j.coastaleng.2013.08.010
  13. Higuera, P., Losada, I. J. and Lara, J. L. (2015). Three-dimensional numerical wave generation with moving boundaries, Coastal Engineering, 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003
  14. Horgue, P., Soulaine, C., Franc, J., Guibert, R. and Debenest, G. (2015). An open-source toolbox for multiphase flow in porous media, Computer physics Communications, 187, 217-226. https://doi.org/10.1016/j.cpc.2014.10.005
  15. Hsu, H. C., Chen, Y. Y., Hsu, J. R. and Tseng, W. J. (2009). Nonlinear water waves on uniform current in Lagrangian coordinates, Journal of Nonlinear Mathematical Physics, 16(1), 47-61. https://doi.org/10.1142/S1402925109000054
  16. Isaacson, M. and Cheung, K. F. (1993). Time-domain solution for wave-current interactions with a two-dimensional body, Applied Ocean Research, 15(1), 39-52. https://doi.org/10.1016/0141-1187(93)90031-R
  17. Iwata, K, Kim, D. S., Asai, M. and Shimoda, M. (1990). Wave breaking on submerged floating structure, Proceedings of Coastal Engineering, JSCE, 37, 604-608 (in Japanese).
  18. Jacobsen, N. G., Fuhrman, D. R. and Fredse, J. (2012). A wave generation toolbox for the open-source CFD library: Open-Foam$^{(R)}$, International Journal for Numerical Methods in Fluids, 70(9), 1073-1088. https://doi.org/10.1002/fld.2726
  19. Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D. and Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters, Coastal Engineering, 52(10), 949-969. https://doi.org/10.1016/j.coastaleng.2005.09.011
  20. Kemp, P. H. and Simons, R. R. (1982). The interaction of waves and a turbulent current: waves propagating with the current, Journal of Fluid Mechanics, 116, 227-250. https://doi.org/10.1017/S0022112082000445
  21. Kemp, P. H. and Simons, R. R. (1983). The interaction of waves and a turbulent current: waves propagating against the current, Journal of Fluid Mechanics, 130, 73-89. https://doi.org/10.1017/S0022112083000981
  22. Kissling, K., Springer, J., Jasak, H., Schutz, S., Urban, K. and Piesche, M. (2010). A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids, European Conference on Computational Fluid Dynamics, ECCOMAS CFD.
  23. Li, T., Troch, P. and De Rouck, J. (2007). Interactions of breaking waves with a current over cut cells, Journal of Computational Physics, 223(2), 865-897. https://doi.org/10.1016/j.jcp.2006.10.003
  24. Lin, M. C. and Hsiao, S. S. (1994). Boundary element analysis of wave-current interaction around a large structure, Engineering Analysis with Boundary Elements, 14(4), 325-334. https://doi.org/10.1016/0955-7997(94)90062-0
  25. Lin, Z., Guo, Y., Jeng, D. S., Rey, N. and Liao, C. (2015). An integrated finite element method model for wave-soil-pipeline interaction, Proceedings of IAHR.
  26. Liu, P. L. F., Lin, P., Chang, K. A. and Sakakiyama, T. (1999). Numerical modeling of wave interaction with porous structures, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 125(6), 322-330. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322)
  27. Madsen, O. S. (1994). Spectral wave-current bottom boundary layer flows, Coastal Engineering, 94, 384-397.
  28. Markus, D., Hojjat, M., Wuchner, R. and Bletzinger, K. U. (2013). A CFD approach to modeling wave-current interaction, International Journal of Offshore and Polar Engineering, 23(1).
  29. Mathisen, P. P. and Madsen, O. S. (1996). Waves and currents over a fixed rippled bed: 1. Bottom roughness experienced by waves in the presence and absence of currents, Journal of Geophysical Research: Oceans, 101(C7), 16533-16542. https://doi.org/10.1029/96JC00954
  30. Mathisen, P. P. and Madsen, O. S. (1996). Waves and currents over a fixed rippled bed: 2. Bottom and apparent roughness experienced by currents in the presence of waves, Journal of Geophysical Research: Oceans, 101(C7), 16543-16550. https://doi.org/10.1029/96JC00955
  31. Menter, F.R. (1993). Zonal two-equation k-w turbulence model for aerodynamic flows, AIAA Paper, 1993-2906.
  32. Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32(8), 269-289.
  33. Park, J. C., Kim, M. H. and Miyata, H. (2001). Three-dimensional numerical wave tank simulations on fully nonlinear wave-current-body interactions, Journal of Marine Science and Technology, 6(2), 70-82. https://doi.org/10.1007/s773-001-8377-2
  34. Peregrine, D. H. (1976). Interaction of water waves and currents, Advances in Applied Mechanics, 16, 9-117. https://doi.org/10.1016/S0065-2156(08)70087-5
  35. Peregrine, D. H. and Jonsson, I. G. (1983). Interaction of waves and currents, Bristol Univ..
  36. Ranasinghe, R. S., Sato, S. and Tajima, Y. (2009). Modeling of waves and currents around porous submerged breakwaters, Coastal Dynamics, 12.
  37. Safti, H. (2013). A numerical wave-structure-soil interaction model for monolithic breakwaters subject to breaking wave impact, Ports 2013, ASCE, 1974-1984.
  38. Shen, Z., Wan, D. and Carrica, P. M. (2015). Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering, Ocean Engineering, 108, 287-306. https://doi.org/10.1016/j.oceaneng.2015.07.035
  39. Soltanpour, M., Samsami, F., Shibayama, T. and Yamao, S. (2014). Study of irregular wave-current-mud interaction, Proceedings of ICCE, ASCE, 1(34), 27.
  40. Teles, M. J., Pires-Silva, A. A. and Benoit, M. (2013). Numerical modelling of wave current interactions at a local scale, Ocean Modelling, 68, 72-87. https://doi.org/10.1016/j.ocemod.2013.04.006
  41. Thomas, G. P. (1981). Wave-current interactions: an experimental and numerical study. Part 1. Linear waves, Journal of Fluid Mechanics, 110, 457-474. https://doi.org/10.1017/S0022112081000839
  42. Thomas, G. P. (1990). Wave-current interactions: an experimental and numerical study. Part 2. Nonlinear waves, Journal of Fluid Mechanics, 216, 505-536. https://doi.org/10.1017/S0022112090000519
  43. Umeyama, M. (2005). Reynolds stresses and velocity distributions in a wave-current coexisting environment, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 131(5), 203-212. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:5(203)
  44. Umeyama, M. (2009). Changes in turbulent flow structure under combined wave-current motions, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 135(5), 213-227. https://doi.org/10.1061/(ASCE)0733-950X(2009)135:5(213)
  45. Umeyama, M. (2011). Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 137(2), 85-94. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000067
  46. van Gent, M. R. A. (1995). Porous flow through rubble-mound material, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 121(3), 176-181. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:3(176)
  47. van Hoften, J. D. A. and Karaki, S. (1976). Interaction of waves and a turbulent current, Proceedings of ICCE, ASCE, 1(15).
  48. Wroniszewski, P. A., Verschaeve, J. C. and Pedersen, G. K. (2014). Benchmarking of Navier-Stokes codes for free surface simulations by means of a solitary wave, Coastal Engineering, 91, 1-17. https://doi.org/10.1016/j.coastaleng.2014.04.012
  49. You, Z-J. (1994). A simple model for current velocity profiles in combined wave-current flows, Coastal Engineering, 23(3), 289-304. https://doi.org/10.1016/0378-3839(94)90007-8
  50. Zhao, R. and Faltinsen, O. M. (1988). Interaction between waves and current on a two-dimensional body in the free surface, Applied Ocean Research, 10(2), 87-99. https://doi.org/10.1016/S0141-1187(88)80035-X
  51. Zheng, J. H. and Tang, Y. (2009). Numerical simulation of spatial lag between wave breaking point and location of maximum wave-induced current, China Ocean Engineering, 23(1), 59-71.
  52. Zhang, J. S., Zhang, Y., Jeng, D. S., Liu, P. F. and Zhang, C. (2014). Numerical simulation of wave-current interaction using a RANS solver, Ocean Engineering, 75, 157-164. https://doi.org/10.1016/j.oceaneng.2013.10.014
  53. Zou, Z. L., Hu, P. C., Fang, K. Z. and Liu, Z. B. (2013). Boussinesq-type equations for wave-current interaction, Wave Motion, 50(4), 655-675. https://doi.org/10.1016/j.wavemoti.2013.01.001

Cited by

  1. Investigation of Applicability of OpenFOAM for Regular Wave Modeling of Floating Vertical Plate vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.382
  2. Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.399
  3. Prediction of Mean Water Level Rise Behind Low-Crested Structures and Outflow Velocity from Openings by Using a Hybrid Method Based on Two Dimensional Model Test and Hydrodynamic Numerical Modeling vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.410
  4. Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.286
  5. Characteristics of Water Surface Variations around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.335
  6. 3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.153
  7. Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.166
  8. A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model vol.30, pp.3, 2018, https://doi.org/10.9765/KSCOE.2018.30.3.114
  9. Nonlinear Irregular Waves-current Interaction on Flow Fields with Wave Breaking around Permeable Submerged Breakwater vol.30, pp.2, 2018, https://doi.org/10.9765/KSCOE.2018.30.2.39
  10. Numerical Simulation of Interaction between Composite Breakwater and Seabed under Regular Wave Action by olaFlow Model vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.270