DOI QR코드

DOI QR Code

Relationship between Climatic Factors and Occurrence of Ectomycorrhizal Fungi in Byeonsanbando National Park

변산반도 국립공원의 외생균근성 버섯 발생과 기후 요인 과의 관계

  • Kim, Sang-Wook (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University) ;
  • Jang, Seog-Ki (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University)
  • 김상욱 (원광대학교 산림조경학과) ;
  • 장석기 (원광대학교 산림조경학과)
  • Received : 2016.08.24
  • Accepted : 2016.09.29
  • Published : 2016.12.30

Abstract

A survey of ectomycorrhizal fungi was performed during 2009-2011 and 2015 in Byeonsanbando National Park. A total of 3,624 individuals were collected, which belonged one division, 1 class, 5 orders, 13 families, 33 genera, 131 species. The majority of the fruiting bodies belonged to orders Agaricales, Russulales, and Boletales, whereas a minority belonged to orders Cantharellales and Thelephorale. In Agaricales, there were 6 families, 9 genera, 49 species, and 1,343 individuals; in Russulales, 1 family, 2 genera, 35 species, and 854 individuals; in Boletales, 4 families, 19 genera, 40 species, and 805 individuals; in Cantharellales, 1 family, 2 genera, 5 species, and 609 individuals; and in Thelephorale, 1 family, 1 genus, 2 species, and 13 individuals. The most frequently observed families were Russulaceae (854 individuals representing 35 species), Boletaceae (652 individuals representing 34 species), and Amanitaceae (754 individuals representing 25 species). The greatest numbers of overall and dominant species and individual fruiting bodies were observed in July. Most species and individuals were observed at altitudes of 1~99 m, and population sizes dropped significantly at altitudes of 300 m and higher. Apparently, the highest diversity of species and individuals occurred at climatic conditions with a mean temperature of $23.0{\sim}25.9^{\circ}C$, maximum temperature of $28.0{\sim}29.9^{\circ}C$, minimum temperature of $21.0{\sim}22.9^{\circ}C$, relative humidity of 77.0~79.9%, and rainfall of 300 mm or more.

2009년부터 2011년, 2015년까지 변산반도 국립공원의 외생균근성 버섯을 조사한 결과, 총 1문 1강 5목 13과 33속 131종 3,624개체가 조사되었으며, 주름버섯목(Agaricales)이 6과 9속 49종 1,343개체, 무당버섯목(Russulales) 1과 2속 35종 854개체, 그물버섯목(Boletales) 4과 19속 40종 805개체, 꾀꼬리버섯목(Cantharellales) 1과 2속 5종 609개체 및 사마귀버섯목(Thelephorales) 1과 1속 2종 13개체의 순으로 발생되어 대부분의 외생균근성 버섯은 주름버섯목, 무당버섯목 및 그물버섯목 등 3목에 속하는 것으로 나타났다. 가장 많이 조사된 외생균근성 버섯은 무당버섯과로 35종이었으며, 그물버섯과(34종) 및 광대버섯과(25종)순으로 나타났다. 개체수는 무당버섯과가 854개체로 가장 많았고 광대버섯과(754개체) 및 그물버섯과(652개체) 순으로 조사되었다. 월별 발생에서는 대부분의 외생균근성 버섯 및 우점 외생균근성 버섯의 종수 및 개체수는 7월에 집중하는 것으로 나타났다. 고도별에서는 100 m 이하에서 가장 많은 종수 및 개체수가 조사되었고 300 m 이상에서는 현저히 적어지는 것으로 나타났다. 대부분의 외생균근성 버섯 및 우점 외생균근성 버섯은 평균온도 $23.0{\sim}25.9^{\circ}C$, 최고온도 $28.0{\sim}29.9^{\circ}C$, 최저온도 $21.0{\sim}22.9^{\circ}C$, 상대습도 77.0~79.9%, 강수량 300.0 mm 이상인 시기에 다양한 종 및 개체수 발생이 높은 것으로 나타났다.

Keywords

References

  1. Taylor AF, Martin F, Read DJ. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze ED, editor. Carbon and nitrogen cycling in European forest ecosystems-ecological studies. Berlin: Springer-Verlag; 2000. p. 343-65.
  2. Rinaldi AC, Comandini O, Kuyper TW. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diver 2008;33:1-45.
  3. Bahram M, Polme S, Koljalg U, Tedersoo L. A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 2011;75:313-20. https://doi.org/10.1111/j.1574-6941.2010.01000.x
  4. Baxter JW, Dighton J. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol 2001;152:139-49. https://doi.org/10.1046/j.0028-646x.2001.00245.x
  5. Dahlberg A. Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 2001;150:555-62. https://doi.org/10.1046/j.1469-8137.2001.00142.x
  6. Natarajan K, Senthilarasu G, Kumaresan V, Riviere T. Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Curr Sci 2005;88:1893-5.
  7. Jones MD, Durall DM, Cairney JW. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 2003;157:399-422. https://doi.org/10.1046/j.1469-8137.2003.00698.x
  8. Heinonsalo J, Koskiahde I, Sen R. Scots pine bait seedling performance and root colonizing ectomycorrhizal fungal community dynamics before and during the 4 years after forest clearcut logging. Can J For Res 2007;37:415-29. https://doi.org/10.1139/x06-213
  9. Markkola AM, Ahonen-Jonnarth U, Roitto M, Strommer R, Hyvarinen M. Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ Pollut 2002;120:797-803. https://doi.org/10.1016/S0269-7491(02)00168-9
  10. Diedhiou AG, Dupouey JL, Buee M, Dambrine E, Laut L, Garbaye J. The functional structure of ectomycorrhizal communities in an oak forest in central France witnesses ancient Gallo-Roman farming practices. Soil Biol Biochem 2010;42:860-2. https://doi.org/10.1016/j.soilbio.2010.01.011
  11. Anderson IC, Bastias BA, Genney DR, Parkin PI, Cairney JW. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol Res 2007;111:482-6. https://doi.org/10.1016/j.mycres.2007.02.006
  12. Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-40. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  13. Twieg BD, Durall DM. Simard SW. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 2007;176:437-47. https://doi.org/10.1111/j.1469-8137.2007.02173.x
  14. Avis PG, McLaughlin DJ, Dentinger BC, Reich PB. Long-term increase in nitrogen supply alters above-and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 2003;160:239-53. https://doi.org/10.1046/j.1469-8137.2003.00865.x
  15. Watling R. Dawyck Botanic Garden: the Heron Wood cryptogamic project. Bot J Scotl 2004;56:109-18. https://doi.org/10.1080/03746600408685073
  16. Gange AC, Gange EG, Sparks TH, Boddy L. Rapid and recent changes in fungal fruiting patterns. Science 2007;316:71. https://doi.org/10.1126/science.1137489
  17. Kauserud H, Stige LC, Vik JO, Okland RH, Hoiland K, Stenseth NC. Mushroom fruiting and climate change. Proc Natl Acad Sci USA 2008;105:3811-4. https://doi.org/10.1073/pnas.0709037105
  18. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M. A strong species-area relationship for eukaryotic soil microbes:island size matters for ectomycorrhizal fungi. Ecol Lett 2007;10:470-80. https://doi.org/10.1111/j.1461-0248.2007.01035.x
  19. Breitenbach J, Kranzlin F. Fungi of Switzerland, Vol. 1: Ascomycetes. Luzern: Mykologia; 1984.
  20. Breitenbach J, Kranzlin F. Fungi of Switzerland, Vol. 2: Non Gilled Fungi. Luzern: Mykologia; 1986.
  21. Breitenbach J, Kranzlin F. Fungi of Switzerland, Vol. 3: Boletes and Agarics (Part 1). Luzern: Mykologia; 1991.
  22. Breitenbach J, Kranzlin F. Fungi of Switzerland, Vol. 4: Agarics (Part 2). Luzern: Mykologia; 1995.
  23. Breitenbach J, Kranzlin F. Fungi of Switzerland, Vol. 5: Agarics (Part 3). Luzern: Mykologia; 2000.
  24. Park WH, Lee HD. Illustrated book of Korean medicinal mushrooms. Seoul: Kyohaksa; 2003.
  25. Park WH, Lee JH. New wild fungi of Korea. Seoul: Kyohaksa; 2011.
  26. Jang SK, Kim SW. Relationship between ectomycorrhizal fruiting bodies and climatic and environmental factors in Naejangsan National Park, Korea. Mycobiology 2015;43:122-30. https://doi.org/10.5941/MYCO.2015.43.2.122
  27. Ohenoja E. Effect of weather conditions on the larger fungi at different forest sites in northern Finland in 1976-1988 [dissertation]. Oulu: University of Oulu; 1993.
  28. Kim HJ, Chung JC, Jang SK, Jang KK. Distribution of ectomycorrhizal fruit bodies according to forest fire area. Korean J Ecol Environ 2013;46:251-64.
  29. Bahram M, Polme S, Koljalg U, Zarre S, Tedersoo L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 2012;193:465-73. https://doi.org/10.1111/j.1469-8137.2011.03927.x
  30. Lange M. Fungus flora in August: ten years observation in a Danish beech wood district. Nord J Bot 1978;73:21-54.
  31. Eveling DW, Wilson RN, Gillespie ES, Bataille A. Environmental effects on sporocarp counts over fourteen years in a forest area. Mycol Res 1990;94:998-1002. https://doi.org/10.1016/S0953-7562(09)81320-8
  32. Jang SK. Distribution of higher fungi in Wolchulsan National Park. Kor J Mycol 2014;42:9-20. https://doi.org/10.4489/KJM.2014.42.1.9