DOI QR코드

DOI QR Code

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2

대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응

  • Oh, Soonja (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Son, In-Chang (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Wi, Seung Hwan (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Song, Eun Young (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 손인창 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 위승환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 송은영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2016.10.06
  • Accepted : 2016.12.25
  • Published : 2016.12.30

Abstract

The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

본 연구는 대기 중 $CO_2$ 농도의 증가가 배추(B. campestris subsp. napus var. pekinensis)의 광합성과 생리적 특성에 미치는 영향을 조사하여 미래의 대기중 $CO_2$ 농도 증가로 인한 고랭지 배추의 생산성을 예측해 보고자 수행하였다. 대기 $CO_2$ 농도를 달리하여 배추를 5주 동안 재배하였을 때, 지상부 생체량, 엽수, 엽면적, 엽장, 엽폭은 모두 대기 $CO_2$ 농도 조건($400{\mu}mol{\cdot}mol^{-1}$)에서 재배된 배추에서보다 고농도의 $CO_2$ 조건($800{\mu}mol{\cdot}mol^{-1}$)에서 재배된 배추에서 더 높게 나타났다. 그리고 증산률(E)이 다소 낮았지만, $CO_2$ 고정률(A), 기공전도도($g_s$)와 수분이용효율(WUE)도 고농도의 $CO_2$에서 높았다. 최대광합성률($A_{max}$)은 대조구인 대기 중 $CO_2$ 농도에서 보다 고농도의 $CO_2$ 조건에서 2.2배 더 높았다. 광보상점($Q_{comp}$)은 대조구에서보다 고농도의 $CO_2$ 조건에서 다소 낮았다. 순양자수율(${\varphi}$)은 고농도의 $CO_2$ 조건에서 재배된 배추에서 높았다. 그러나, $CO_2$반응곡선으로부터 얻은 광호흡률($R_p$), 최대카르복실화속도($V_{cmax}$), $CO_2$ 보상점(CCP), 최대전자전달률($J_{max}$), 탄소고정효율(ACE) 등은 $CO_2$ 농도에 따라서 차이가 없거나 있더라도 미미하였다. 그리고, 광계II의 최대 광화학적 효율($F_v/F_m$)과 잠재적 광합성능($F_v/F_o$)이 $CO_2$ 농도에 따라 유의한 차이를 보이지 않아 고농도 $CO_2$ 조건이 고랭지 재배시 배추의 생육에 스트레스로 작용하지 않는 것으로 보인다. 배추의 광합성을 위한 최적 온도는 고농도 $CO_2$에서 $2^{\circ}C$ 정도 더 높았으며, 최적온도 이상의 조건에서는 대기 $CO_2$와 고농도 $CO_2$에서 모두 $CO_2$ 고정률은 감소하고 암호흡은 증가하는 양상을 보였다. 이상의 결과로부터 미래의 대기 중 $CO_2$ 증가는 고랭지 재배시 배추의 생육에 있어서 스트레스 요인으로 작용하지는 않으며 수광량의 증가가 생산성을 향상시킬 것으로 보인다.

Keywords

References

  1. Choi, E. Y., T. C. Seo, S. G. Lee, I. H. Cho, and J. Stangoulis, 2011: Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature. Horticulture, Environment, and Biotechnology 52(4), 376-386. https://doi.org/10.1007/s13580-011-0012-0
  2. Crous, K. Y., A. G. Quentin, Y. S. Lin, B. E. Medlyn, D. G. Williams, C. V. Barton, and D. S. Ellsworth, 2013: Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated $CO_2$ and climate warming. Global Change Biology 19(12), 3790-3807. https://doi.org/10.1111/gcb.12314
  3. Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149(1), 78-90. https://doi.org/10.1007/BF00386231
  4. Garruna-Hernandez R., M. Monforte-Gonzalez, A. Canto-Aguilar, F. Vazquez-Flota, and R. Orellana, 2013: Enrichment of carbon dioxide in the atmosphere increases the capsaicinoids content in Habanero peppers (Capsicum chinense Jacq.). Journal of the Science of Food and Agriculture 93(6), 1385-1388. https://doi.org/10.1002/jsfa.5904
  5. Ge, Z. M., X. Zhou, S. Kellomaki, C. Zhang, H. Peltola, P. J. Martilainen, and K. Y. Wang, 2012: Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, $CO_2$, and soil water regimes. Photosynthetica 50(1), 141-151. https://doi.org/10.1007/s11099-012-0014-x
  6. Intergovernmental Panel on Climate Change (IPCC), 2014: Climate Change 2014, Mitigation of climate change-contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, USA.
  7. Kang, B. R., G. P. Kim, and S. J. Kim, 2009: Characteristics of regional underground air distribution for various geothermal utilization. Rep. JERI 2, 223-237.
  8. Kimball, B. A., 1985: Adaptation of vegetation and management practices to a higher carbon dioxide world. US Department of Energy, Washington, USA, 185-204 pp.
  9. Korea Meteorological Administration (KMA), 2011: Automatic weather system (AWS). http://www.kma.go.kr
  10. Korner, C., and F. A. Bazzaz, 1996: Carbon dioxide, populations, and communities. San Diego, CA: Academic Press.
  11. Lee, S. G., J. H. Moon, Y. A. Jang, S. Y. Kim, and K. D. Ko, 2009: Change of photosynthesis and cellular tissue under high $CO_2$ concentration and high temperature in radish. Korean Journal of Horticultural Science & Technology 27(2), 194-198.
  12. Lee, J. W., S. Y. Kim, Y. A. Jang, J. H. Moon, and W. M. Lee, 2006: Growth Response and $CO_2$ Biomass of Chinese Cabbage and Radish under High Temperature and $CO_2$ Concentration. Journal of Bio-Environment Control 15, 364-368.
  13. Marshall, B., and P. V. Biscoe, 1980: A model for $C_3$ leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany 31(1), 29-39. https://doi.org/10.1093/jxb/31.1.29
  14. Nederhoff, E. M., and J. G. Vegter, 1994: Photosynthesis of stands of tomato, cucumber, and sweet pepper measured in greenhouses under various $CO_2$-concentration. Annals of Botany 73(4), 353-361. https://doi.org/10.1006/anbo.1994.1044
  15. Norby, R. J., S. D. Wullschleger, C. A. Gunderson, and C. T. Nietch, 1995: Increased growth efficiency of Quercus alba trees in a $CO_2$-enriched atmosphere. New Phytologist 131(1), 91-97. https://doi.org/10.1111/j.1469-8137.1995.tb03058.x
  16. Oh, S., K. H. Moon, E. Y. Song, I. C. Son, and S. C. Koh, 2015: Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Horticulture, Environment, and Biotechnology 56(2), 159-166. https://doi.org/10.1007/s13580-015-0122-1
  17. Park, J. Y., and Y. G. Park, 2013: The development of Chinese cabbage and radish forecast models. Report M125 on Korea Rural Economic Institute, KREI, Seoul, Korea.
  18. Pinero, M. C., F. Houdusse, J. M. Garcia-Mina, M. Garnica, and F. M. del Amor, 2014: Regulation of hormonal responses of sweet pepper as affected by salinity and elevated $CO_2$ concentration. Physiologia Plantarum 151(4), 375-389. https://doi.org/10.1111/ppl.12119
  19. Poorter, H., 1993: Interspecific variation in the growth response of plants to an elevated ambient $CO_2$ concentration. Vegetatio 104(1), 77-97. https://doi.org/10.1007/BF00048146
  20. Prasad, P. V., K. J. Boote, L. H. Allen, and J. M. Thomas, 2002: Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8(8), 710-721. https://doi.org/10.1046/j.1365-2486.2002.00508.x
  21. Pritchard, S. G., H. H. Rogers, S. A. Prior, and C. M. Peterson, 1999: Elevated $CO_2$ and plant structure: a review. Glob Change Biology 5(7), 807-837. https://doi.org/10.1046/j.1365-2486.1999.00268.x
  22. Vuorinen, T., G. V. P. Reddy, A. M. Nerg, and J. K. Holopainen, 2004: Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric $CO_2$ concentration. Atmospheric Environment 38(5), 675-682. https://doi.org/10.1016/j.atmosenv.2003.10.029