DOI QR코드

DOI QR Code

온도와 일장에 따른 국화의 식물계절과 출엽 예측 모델 개발

Modelling the Effects of Temperature and Photoperiod on Phenology and Leaf Appearance in Chrysanthemum

  • 서범석 (서울대학교 식물생산과학부) ;
  • 박하승 (충청남도 농업기술원 예산국화시험장) ;
  • 이규종 (서울대학교 농업생명과학연구원) ;
  • 최덕환 (서울대학교 식물생산과학부) ;
  • 이변우 (서울대학교 식물생산과학부)
  • Seo, Beom-Seok (Department of Plant Science, Seoul National University) ;
  • Pak, Ha-Seung (Chrysanthemum Experiment Station ChungNam Province RDA) ;
  • Lee, Kyu-Jong (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Doug-Hwan (Department of Plant Science, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science, Seoul National University)
  • 투고 : 2016.11.03
  • 심사 : 2016.12.13
  • 발행 : 2016.12.30

초록

단일식물인 국화의 생육은 온도, 일장, 일사량 등 기상 환경과 재배관리 조건에 영향을 받는다. 기상환경과 재배관리를 고려한 국화의 생육예측모델은 국화 재배 시 의사결정을 위한 도구로 이용될 수 있을 것이다. 이 연구에서는 국화 생육모델 구축을 위한 기초 작업으로 온도와 일장뿐만 아니라 에세폰 처리, 야간 전조처리리 등 재배관리 정보를 입력변수로 하여 국화 품종 백선의 출엽과 식물계절을 예측할 수 있는 모델을 개발하였다. 모델은 국화의 생육시기를 유약기(Juvenile phase), 유약기 이후 발뢰기까지 기간, 발뢰기부터 개화기까지의 기간의 기간으로 구분하여 계산을 하도록 구성하였다. 유약기는 출엽속도의 온도 반응 곡선과 유약기의 종료를 결정하는 기준 엽수를 이용하여 추정하도록 구성 하였다. 한편 모주와 이식 후 식물체에 대한 에세폰 처리가 유약기 종료시점의 엽수를 증가시키는 것으로 가정하여 모델에 반영하였다. 유약기 이후에는 온도와 일장에 관한 함수를 이용하여 발육속도를 계산하여 발뢰기와 개화기를 예측하도록 하였는데 야간전조 처리는 임계일장 이상의 장일로 가정하여 모델에 반영하였다. 그리고 최종 엽수는 잎의 출엽이 발뢰 직전까지 진행되는 것으로 가정하여 예측하였다. 위와 같이 구성된 모델의 계수는 온도반응 실험과 정식시기 실험 등을 이용하여 추정하였고 프로그램 언어인 Java를 이용하여 구현하였다. 모델의 계수 추정에 이용한 자료(calibration 자료)뿐만 아니라 이와는 별개의 자료(validation 자료) 모두에 대하여 모델이 비교적 정확하게 발뢰기와 개화기를 예측할 뿐만 calibration에 비하여 validation의 정확도가 떨어지지 않았다. 한편 생육시기에 따른 출엽수와 최종엽수를 모델이 비교적 정확하게 예측하였으나 생육시기에 따라 다소 과소 또는 과대 예측을 하여는 경향을 보여, 온도 이외의 요인을 반영할 수 있는 실험을 통해 개선할 필요가 있는 것으로 판단되었다.

Chrysanthemum production would benefit from crop growth simulations, which would support decision-making in crop management. Chrysanthemum is a typical short day plant of which floral initiation and development is sensitive to photoperiod. We developed a model to predict phenological development and leaf appearance of chrysanthemum (cv. Baekseon) using daylength (including civil twilight period), air temperature, and management options like light interruption and ethylene treatment as predictor variables. Chrysanthemum development stage (DVS) was divided into juvenile (DVS=1.0), juvenile to budding (DVS=1.33), and budding to flowering (DVS=2.0) phases for which different strategies and variables were used to predict the development toward the end of each phenophase. The juvenile phase was assumed to be completed at a certain leaf number which was estimated as 15.5 and increased by ethylene application to the mother plant before cutting and the transplanted plant after cutting. After juvenile phase, development rate (DVR) before budding and flowering were calculated from temperature and day length response functions, and budding and flowering were completed when the integrated DVR reached 1.33 and 2.0, respectively. In addition the model assumed that leaf appearance terminates just before budding. This model predicted budding date, flowering date, and leaf appearance with acceptable accuracy and precision not only for the calibration data set but also for the validation data set which are independent of the calibration data set.

키워드

참고문헌

  1. Adams, S. R., S. Pearson, and P. Hadley, 1998a: An appraisal of the use of reciprocal transfer experiments: assessing the stages of photoperiod sensitivity in chrysanthemum cv. Snowdon (Chrysanthemum morifolium Ramat.). Journal of Experimental Botany 49(325), 1405-1411. https://doi.org/10.1093/jxb/49.325.1405
  2. Adams, S. R., S. Pearson, and P. Hadley, 1998b: The effect of temperature on inflorescence initiation and subsequent development in chrysanthemum cv. Snowdon (Chrysanthemum${\times}$morifolium Ramat.). Scientia Horticulturae 77(1), 59-72. https://doi.org/10.1016/S0304-4238(98)00163-0
  3. Charles-Edwards, D. A., K. E. Cockshull, J. S. Horridge, and J. H. M. Thornley, 1979: A model of flowering in Chrysanthemum. Annals of Botany, 44(5), 557-566. https://doi.org/10.1093/oxfordjournals.aob.a085767
  4. Hakuzan, R. and Kooriyama, K., 2013: Effect of Night-break Treatment at Different Times on Inhibition of Flower Bud Initiation in Chrysanthemum. Horticultural Research (Japan), 12(4), 427-432 https://doi.org/10.2503/hrj.12.427
  5. Hakuzan, R. and Kooriyama, K., 2014: Relationship between Critical Day Length and Effective Night-break Time in Chrysanthemum. Horticultural Research (Japan), 13(4), 357-363. https://doi.org/10.2503/hrj.13.357
  6. Hakuzan, R. and Nagayoshi, S., 2013: Effects of Night-break Light Quality on Floral Inhibition of Chrysanthemum. Horticultural Research (Japan), 12(2), 173-178 https://doi.org/10.2503/hrj.12.173
  7. Hiden, C., and R. U. Larsen, 1994: Predicting flower development in greenhouse-grown Chrysanthemum. Scientia Horticulturae 58(1-2), 123-138. https://doi.org/10.1016/0304-4238(94)90133-3
  8. Karlsson, M. G., and R. D. Heins, 1994: A model of chrysanthemum stem elongation. Journal of the American Society for Horticultural Science 119(3), 403-407.
  9. Larsen, R. U., and C. Hiden, 1995: Predicting leaf unfolding in flower induced shoots of greenhouse-grown chrysanthemum. Scientia Horticulturae 63(3-4), 225-239. https://doi.org/10.1016/0304-4238(95)00801-Y
  10. Lee, J. H., E. Heuvelink, and H. Challa, 2002: Simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum. Acta horticulturae 593.
  11. Li, G., L. Lin, Y. Dong, D. An, Y. Li, W. Luo, X. Yin, W. Li, J. Shao, Y. Zhou, J. Dai, W. Chen, and C. Zhao, 2012: Testing two models for the estimation of leaf stomatal conductance in four greenhouse crops cucumber, chrysanthemum, tulip and lilium. Agricultural and forest meteorology 165, 92-103. https://doi.org/10.1016/j.agrformet.2012.06.004
  12. Nagasuga, K., T. Yano, K. Inamoto, and H. Yamazaki, 2013: Flowering and floret formation of summer-to-autumn flowering-standard type Chrysanthemums (Chrysanthemum morifolium Ramat.) under mist cooling during flower bud differentiation and developmental phase. Horticultural Research (Japan) 12(3), 289-295. https://doi.org/10.2503/hrj.12.289
  13. Nagasuga, K., H. Yano, H. Yamazaki, K. Inamoto, and A. Yamasaki, 2007: Influence of temperature during reproductive phase on flowering and floral morphology in summer-to-autumn flowering-type 'Iwa-no-hakusen' and autumn flowering-type 'Jinba' chrysanthemum (Chrysanthemum morifolium Ramat.). Horticultural Research (Japan) 6(3), 479-485. https://doi.org/10.2503/hrj.6.479
  14. Nagasuga, K., T. Yano, H. Yamazaki, K. Inamoto, and A. Yamasaki, 2008: The stages of flower bud development sensitive to low and high temperatures for flowering of summer-to-autumn flowering-type 'Iwa-no-hakusen' chrysanthemum (Chrysanthemum morifolium Ramat.). Horticultural Research (Japan) 7(1), 103-109. https://doi.org/10.2503/hrj.7.103
  15. Nothnagl, M., A. Kosiba, and R. U. Larsen, 2004: Predicting the effect of irradiance and temperature on the flower diameter of greenhouse grown chrysanthemum. Scientia Horticulturae 99(3-4), 319-329. https://doi.org/10.1016/S0304-4238(03)00096-7
  16. Oda, A., Sumitomo, K. Sumitomo, T. Tsunemi, M. Douzono, T. Motozu, and T. Hisamatsu, 2010: Variations of photoperiodic response of flower buds initiation and development in July- and August-flowering small-flowered spray chrysanthemum cultivars. Horticultural Research (Japan) 9(1), 93-98. https://doi.org/10.2503/hrj.9.93
  17. Ploeg, A. V. D., and E. Heuvelink, 2006: The influence of temperature on growth and development of chrysanthemum cultivars. Journal of Horticultural Science and Biotechnology 8(2), 174-182.
  18. Sakamoto, H., and T. Tsuchiya, 2007: Influence of spraying ethephone on the flowering of non-branching type chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars. Horticultural Research (Japan) 6(3), 411-416. https://doi.org/10.2503/hrj.6.411
  19. Sugiura, H., and M. Fujita, 2003a: Effect of ethephon applications on growth and morphology of summer-to-autumn-flowering chrysanthemums [Dendranthema morifolium] in open culture. Horticultural Research (Japan).
  20. Sugiura, H. and Fujita, M., 2003b: Effect of ethephon on leaf primordium and involucre formation in summerto-autumn-flowering chrysanthemum. Journal of Pesticide Science (Japan).
  21. Tsuchiya, T., 2001: Techniques for growth and flowering in August on chrysanthemum cv.'Iwanohakusen'. Bulletin of the Fukui Agricultural Experiment Station (Japan).
  22. Willits, D. H., P. V. Nelson, M. M. Peet, M. A. Depa, and J. S. Kuehny, 1992: Modeling nutrient uptake in chrysanthemum as a function of growth rate. Journal of the American Society for Horticultural Science 117(5), 769-774.
  23. Yang, Z. Q., W. H. Luo, F. D. Chen, J. J. Gu, X. M. Li, Q. F. Ding, C. B. Zhao, and Y. F. Lu, 2007: Quality prediction model of greenhouse standard cut chrysanthemum based on light-temperature effect. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban 18(4), 877-82.
  24. Kim, T. I., S. C. Lim, B. K. Kang, and G. J. Lee, 2008: 무측지성국화 상품화 향상 연구. Chunbuk Agricultural Research and Extension Services.
  25. Park, H. S., 2007: Effect of temperature and plant growth regulator on the growth and flowering in 'non-branching' type Dendranthema grandiflorum Ramat. Ph.D. dissertation, Dankook University.
  26. Kawata, J., T. Toyoda, M. Uda, M. Okimura, M. Shibata, T. Kameno, M. Amano, Y. Nakamura, and T. Matsuda, 1987: Factors controlling the flowering time of chrysanthemums. Bulletin of the National Research Institute of Vegetables, Ornamental Plants and Tea. Series A 1, 187-222.