DOI QR코드

DOI QR Code

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC

BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석

  • Kang, Sinkyu (Division of Environmental Science, Kangwon National University) ;
  • Lim, Jong-Hwan (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Kim, Eun-Sook (Center for Forest & Climate Change, National Institute of Forest Science) ;
  • Cho, Nanghyun (Division of Environmental Science, Kangwon National University)
  • 강신규 (강원대학교 농업생명과학대학 환경융합학부) ;
  • 임종환 (국립산림과학원 기후변화연구센터) ;
  • 김은숙 (국립산림과학원 기후변화연구센터) ;
  • 조낭현 (강원대학교 농업생명과학대학 환경융합학부)
  • Received : 2016.11.13
  • Accepted : 2016.12.13
  • Published : 2016.12.30

Abstract

A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

생태계 과정 모형인 BIOME-BGC를 이용해 국내 상록침엽수림의 탄소-물 순환 과정의 계절 및 연간 변화를 모의하여 국내의 소나무 고사 현상의 기후-토심 영향을 분석하였다. 연구지로 2009년과 2014년 각각 소나무 대량 고사가 발생한 밀양과 울진을 선정하였다. 두 지역의 표준강수지수를 산정한 결과 약 5년 내외의 주기의 가뭄현상을 판별하였다. 2000년 중반 이후 가뭄은 고온 건조 기후 특성을 보였다. 모형의 여러 변수를 조사한 결과, 임시탄소저장소인 Cpool 변수가 탄소기아에 의한 소나무고사 현상과 개연성이 큰 변수로 나타났다. Cpool의 감소는 총일차생산성(GPP) 감소 혹은 유지호흡(Rm) 증가의 결과로 발생하였고, 연구기간 중 Cpool이 최저값을 보인 해는 각 연구지역에서 소나무 대량 고사가 발생한 해와 잘 일치하였다. 두 지역 모두 가뭄에 의한 GPP 감소와 고온에 의한 Rm 증가가 Cpool의 감소를 초래하였는데, GPP와 Rm의 상대적 기여도는 지역별로 상이하였다. 특히 저온다습한 울진의 경우 Rm 증가 영향이 중요한 요인이었다. 한편 낮은 토심에서 생산성, 생체량, 증산량, Cpool 등 제반 탄소-물 관련 변수가 감소하였고 연간 변동폭이 증가하였다. 그러나 0.5 m 이하 토심에서는 Cpool에 큰 차이가 없는 것으로 보아 일정 수준 이하의 토심에서 생체량-생산성-유지호흡 간의 균형에 따라 Cpool이 유지되는 적응 메커니즘이 나타난 것으로 보인다. 이 연구의 결과 소나무 고사와 관련한 고온건조-탄소 기아 가설을 제안하였고, 보다 현실적 분석을 위한 향후 모형 개선 방향을 제안하였다.

Keywords

References

  1. Adams, H. D., C. H. Luce, D. D. Breshears, C. D. Allen, M. Weiler, V. C. Hale, A. M. S. Smith, and T. E. Huxman, 2012: Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses. Ecohydroloy 5(2), 145-159. https://doi.org/10.1002/eco.233
  2. Adams, H. D., M. Guardiola-Claramonte, G. A. Barron-Gafford, J. C. Villegas, D. D. Breshears, C. B. Zou, P. A. Troch, and T. E. Huxman, 2009: Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceeding of the National Academy of Sciences of the United State of America 106(17), 7063-7066. https://doi.org/10.1073/pnas.0901438106
  3. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J.-H. Lim, G. Allard, S. W. Running, A. Semerci, and N. Cobb, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4), 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  4. Anderegg, W. R. L., J. A. Berry, D. D. Smith, J. S. Sperry, L. D. L. Anderegg, and C. B. Field, 2011: The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceeding of the National Academy of Sciences of the United State of America 109(1), 233-237.
  5. Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agricultural and Forest Meteorology 176(15), 38-49. https://doi.org/10.1016/j.agrformet.2013.03.003
  6. Carnicer, J., M. Coll, M. Ninyerola, X. Pons, G. Sanchez, and J. Penuelas, 2011: Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceeding of the National Academy of Sciences of the United State of America 108(4), 1474-1478. https://doi.org/10.1073/pnas.1010070108
  7. Ciais, Ph., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, Chr. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533. https://doi.org/10.1038/nature03972
  8. Eum, S., S. Kang, D. Lee, 2005: A simulation study to investigate climatic controls on net primary production (NPP) of a rugged forested landscape in the mid-western Korean Peninsula. Korean Journal of Agricultural and Forest Metetorology 7(1), 66-77.
  9. Farquhar, G. D., and T. D. Sharkey, 1982: Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33, 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
  10. Hwang, T., S. Kang, J. Kim, Y. Kim, D. Lee, and L. Band, 2008: Evaluating drought effect on MODIS gross primary production (GPP) with an eco-hydrological model in the mountainous forest, East Asia. Global Change Biology 14(5), 1037-1056. https://doi.org/10.1111/j.1365-2486.2008.01556.x
  11. Jeong, Y. S., J.-H. Lim, and K.-H. Ka, 2015: Effect of low temperature for mycelial growth of ectomycorrhizal mushrooms. Proceedings of 2015 International Meeting of the Federation of Korean Microbiological Societies. KINTEX, Ilsan, Korea. 265pp.
  12. Kang, S., D. Lee, J. Lee, and S. W. Running, 2006: Topographic and climatic controls on soil environments and net primary production in a rugged temperate hardwood forest in Korea. Ecological Research 21(1), 64-74. https://doi.org/10.1007/s11284-005-0095-0
  13. Kang, S., S. Kim, S. Oh, and D. Lee, 2000: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecology and Management 136(1-3), 173-184. https://doi.org/10.1016/S0378-1127(99)00290-X
  14. Kim, E. S., S. K. Kang, B. R. Lee, K. H. Kim, and J. Kim, 2007: Parameterization and application of Regional Hydro-Ecologic Simulation System (RHESSys) for integrating the eco-hydrological processes in the Gwangneung headwater catchment. Korean Journal of Agricultural and Forest Meteorology 9(2), 121-131. https://doi.org/10.5532/KJAFM.2007.9.2.121
  15. Lee, B.-R., S. Kang, E. Kim, T. Hwang, J.-H. Lim, and J. Kim, 2007: Evaluation of a hydro-ecological model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and application at two complex terrain watersheds. Korean Journal of Agricultural and Forest Meteorology 9(4), 247-259. https://doi.org/10.5532/KJAFM.2007.9.4.247
  16. Lim, J.-H., 2015: Status and hypothesis of dieback of pines due to climate change in Korea. Proceedings of 2015 Second Half Conference of the Korean Society of Climate Change Research, in Gwangju, 85pp.
  17. Lim, J.-H., 2016: Climate change-induced dieback of evergreen conifers in Korea and options for adaptation. Proceedings of 2016 International Climate Change Adaptation Symposium on Forest Management for Enhancing Resilience to Climate Change, Seoul, Korea. 53-76.
  18. McDowell, N., W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West, D. G. Williams, and E. A. Yepez, 2008: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178(4), 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  19. McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology 17(22), 179-183.
  20. Poulter, B., U. Heyder, and W. Cramer, 2009: Modeling the sensitivity of the seasonal cycle of GPP to dynamic LAI and soil depths in Tropical rainforests. Ecosystems 12(4), 517-533. https://doi.org/10.1007/s10021-009-9238-4
  21. Rennenberg, H., F. Loreto, A. Polle, F. Brilli, S. Fares, R. S. Beniwal, and A. Gessler, 2006: Physiological responses of forest trees to heat and drought. Plant Biology 8(5), 556-571. https://doi.org/10.1055/s-2006-924084
  22. Smith, B., D. Warlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle, 2014: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027-2054. https://doi.org/10.5194/bg-11-2027-2014
  23. Thornton, P. E., 1998: Regional ecosystem simulation: combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets. Ph.D. dissertation. School of Forestry, University of Montana, Missoula MT, 280pp.
  24. Thornton, P. E., B. E. Law, H. L. Gholz, K. L. Clark, E. Falge, D. S. Ellsworth, A. H. Goldstein, R. K. Monson, D. Hollinger, M. Falk, J. Chen, and J. P. Sparks, 2002: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology 113, 185-222. https://doi.org/10.1016/S0168-1923(02)00108-9
  25. Wagle, P., X. Xiao, M. S. Torn, D. R. Cook, R. Matamala, M. L. Fischer, C. Jin, J. Dong, and C. Biradar, 2014: Sensitivity of vegetation indices and gross primary production of tallgrass prairie to sever drought. Remote Sensing of Environment 152, 1-14. https://doi.org/10.1016/j.rse.2014.05.010
  26. White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani, 2000: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions 4(3), 1-85. https://doi.org/10.1175/1087-3562(2000)004<0001:ITEASI>2.3.CO;2