DOI QR코드

DOI QR Code

Assessment of the Angstrom-Prescott Coefficients for Estimation of Solar Radiation in Korea

국내 일사량 추정을 위한 Angstrom-Prescott계수의 평가

  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 현신우 (서울대학교 식물생산과학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2016.11.01
  • Accepted : 2016.12.09
  • Published : 2016.12.30

Abstract

Models to estimate solar radiation have been used because solar radiation is measured at a smaller number of weather stations than other variables including temperature and rainfall. For example, solar radiation has been estimated using the Angstrom-Prescott (AP) model that depends on two coefficients obtained empirically at a specific site ($AP_{Choi}$) or for a climate zone ($AP_{Frere}$). The objective of this study was to identify the coefficients of the AP model for reliable estimation of solar radiation under a wide range of spatial and temporal conditions. A global optimization was performed for a range of AP coefficients to identify the values of $AP_{max}$ that resulted in the greatest degree of agreement at each of 20 sites for a given month during 30 years. The degree of agreement was assessed using the value of Concordance Correlation Coefficient (CCC). When $AP_{Frere}$ was used to estimate solar radiation, the values of CCC were relatively high for conditions under which crop growth simulation would be performed, e.g., at rural sites during summer. The statistics for $AP_{Frere}$ were greater than those for $AP_{Choi}$ although $AP_{Frere}$ had the smaller statistics than $AP_{max}$ did. The variation of CCC values was small over a wide range of AP coefficients when those statistics were summarized by site. $AP_{Frere}$ was included in each range of AP coefficients that resulted in reasonable accuracy of solar radiation estimates by site, year, and month. These results suggested that $AP_{Frere}$ would be useful to provide estimates of solar radiation as an input to crop models in Korea. Further studies would be merited to examine feasibility of using $AP_{Frere}$ to obtain gridded estimates of solar radiation at a high spatial resolution under a complex terrain in Korea.

농업 생태계의 생산성을 예측하기 위한 모델의 필수 입력변수인 일사량은 비교적 적은 수의 기상관측소에서만 관측되고 있어, 이들 관측값을 대신하기 위해 일사량을 추정하는 모델들이 사용되고 있다. 특히, 간단한 계수를 사용하여 일조시간을 이용하는 Angstrom-Prescott(AP) 모델이 일사량 추정을 위해 가장 널리 쓰이고 있다. 국내에서 보편적으로 적용가능한 AP모델의 계수값을 탐색하기 위해 국내 20개 기상관측소의 30년간의 일단위 관측자료를 입력자료로 사용하여 경험적으로 얻어진 계수와 Frere and Popov(1979)가 제시한 계수($AP_{Frere}$)를 이용한 일사량을 추정하고, 이들의 신뢰도를 분석하였다. 또한, 전역최적화 과정을 통해 시공간적으로 신뢰도가 높은 일사량을 얻을 수 있는 AP계수의 범위를 탐색하였다. 분석을 위해 월별, 년도별, 지역별로 추정값과 측정값 사이의 일치도를 계산하였다. $AP_{Frere}$를 사용한 결과 작물 생산성 예측을 위한 조건에서 일치도가 높게 나타났다. $AP_{Frere}$를 사용하였을 때 전역최적화를 통해 추정한 AP계수($AP_{max}$)를 사용하였을 경우 보다 일치도가 낮았으나 경험적으로 얻어진 계수($AP_{Choi}$)보다는 일치도가 높은 일사량 추정이 가능하였다. 전역최적화를 통해 일사량 추정치의 신뢰도를 분석한 결과, 신뢰도가 높은 일사량을 얻을 수 있는 AP계수의 범위는 년도별로는 좁게 분포하였으나 월별, 지역별로는 넓게 분포하였다. 그 중에서도 변이가 작은 범위는 지역별 일치도가 월별 일치도보다 넓게 분포하였다. $AP_{Frere}$는 각각의 경우에 대해 일치도가 높고 변이가 작은 범위에 속해 국내 조건에서 $AP_{Frere}$를 적용할 경우, 신뢰도 높은 일사량 추정치를 얻을 수 있을 것으로 예상되었다.

Keywords

References

  1. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
  2. Almorox, J. Y., and C. Hontoria, 2004: Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management 45(9), 1529-1535. https://doi.org/10.1016/j.enconman.2003.08.022
  3. Angstrom, A., 1924: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society 50(210), 121-126. https://doi.org/10.1002/qj.49705021008
  4. Besharat, F., A. A. Dehghan, and A. R. Faghih, 2013: Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21, 798-821. https://doi.org/10.1016/j.rser.2012.12.043
  5. Black, J. N., 1956: The distribution of solar radiation over the earth's surface. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie B 7(2), 165-189. https://doi.org/10.1007/BF02243320
  6. Brisson, N., C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P. Bertuzzi, P. Burger, and F. Bussiere, 2003: An overview of the crop model STICS. European Journal of Agronomy 18(3), 309-332. https://doi.org/10.1016/S1161-0301(02)00110-7
  7. Chen, R., K. Ersi, J. Yang, S. Lu, and W. Zhao, 2004: Validation of five global radiation models with measured daily data in China. Energy Conversion and Management 45(11), 1759-1769. https://doi.org/10.1016/j.enconman.2003.09.019
  8. Chirico, N., and P. Gramatica, 2011: Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. Journal of Chemical Information and Modeling 51(9), 2320-2335. https://doi.org/10.1021/ci200211n
  9. Choi, M. H., and J. I. Yun, 2009: On recent variations in solar radiation and daily maximum temperature in summer. Korean Journal of Agricultural and Forest Meteorology 11(4), 185-191. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.185
  10. Choi, M. H., J. I. Yun, U. R. Chung, and K. H. Moon, 2010: Performance of angstrom-prescott coefficients under different time scales in estimating daily solar radiation in South Korea. Korean Journal of Agricultural and Forest Meteorology 12(4), 232-237. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.4.232
  11. Frere, M., and G. F. Popov, 1979: Agrometeorological Crop Monitoring and Forecasting. FAO.
  12. Heinemann, A. B., P. A. van Oort, D. S. Fernandes, and A. D. H. N. Maia, 2012: Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation. Bragantia 71(4), 572-582. https://doi.org/10.1590/S0006-87052012000400016
  13. Holzworth, D. P., V. Snow, S. Janssen, I. N. Athanasiadis, M. Donatelli, G. Hoogenboom, J. W. White, and P. Thorburn, 2015: Agricultural production systems modelling and software: current status and future prospects. Environmental Modelling & Software 72, 276-286. https://doi.org/10.1016/j.envsoft.2014.12.013
  14. Jo, D. K., C. Y. Yun, K. D. Kim, and Y. H. Kang, 2011: A study on the estimating solar radiation using hours of bright sunshine for the installation of photovoltaic system in Korea. Journal of the Korean Solar Energy Society 31(4), 72-79. (in Korean with English abstract)
  15. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European journal of agronomy 18(3), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  16. Jong, R. D., and D. W. Stewart, 1993: Estimating global solar radiation from common meteorological observations in western Canada. Canadian Journal of Plant Science 73(2), 509-518. https://doi.org/10.4141/cjps93-068
  17. Kim, K., H. Jeong, and J. Kim, 2013: Comparison of crop growth and evapotranspiration simulations between Noah Multi Physics model and CERES-Rice model. Korean Journal of Agricultural and Forest Meteorology, 15(4), 282-290. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.282
  18. Kim, J., C.K. Lee, H. Kim, B.W. Lee, and K.S. Kim, 2015: Requirement Analysis of a System to Predict Crop Yield under Climate Change. Korean Journal of Agricultural and Forest Meteorology, 17(1), 1-14. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.1.1
  19. Lee, C.K., J. Kim, and K.S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture, 114, 237-246. (in Korean with English abstract) https://doi.org/10.1016/j.compag.2015.03.021
  20. Lin, L.I., 1989: A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255-268. https://doi.org/10.2307/2532051
  21. Lin, L.I., 2000: A note on the concordance correlation coefficient. Biometrics, 56, 324-325 https://doi.org/10.1111/j.0006-341X.2000.00324.x
  22. Liu, X., X. Mei, Y. Li, Y. Zhang, Q. Wang, J.R. Jensen, and J.R. Porter, 2009: Calibration of the Angstrom-Prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin. Agricultural and forest meteorology, 149(3), 697-710. https://doi.org/10.1016/j.agrformet.2008.10.027
  23. Masutomi, Y., K. Ono, T. Takimoto, M. Mano, A. Maruyama, and A. Miyata, 2016: A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice Ver. 1)-Part II: Model validation.
  24. McBride, G.B., 2005: A proposal for strength-of-agreement criteria for Lin's concordance correlation coefficient. NIWA Client Report: HAM2005-062.
  25. Namrata, K., S.P. Sharma, and S.B.L. Seksena, 2015: Comparison of different models for estimation of diffuse solar radiation in Jharkhand (India) region. Applied Solar Energy, 51(3), 219-224. https://doi.org/10.3103/S0003701X15030081
  26. Prescott, J.A., 1940: Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64(1), 114-118.
  27. Srivastava, R.C., and H. Pandey, 2013: Estimating Angstrom-Prescott coefficients for India and developing a correlation between sunshine hours and global solar radiation for India. ISRN Renewable Energy, 2013.
  28. Swartman, R.K., and O. Ogunlade, 1967: Solar radiation estimates from common parameters. Solar energy, 11(3), 170-172. https://doi.org/10.1016/0038-092X(67)90026-6
  29. van Oort, P.A., M.E. de Vries, H. Yoshida, and K. Saito, 2015: Improved climate risk simulations for rice in arid environments. PloS one, 10(3), e0118114. https://doi.org/10.1371/journal.pone.0118114
  30. Wilkerson, V.A., D.P. Casper, and D.R. Mertens, 1995: The prediction of methane production of Holstein cows by several equations. Journal of Dairy Science, 78(11), 2402-2414. https://doi.org/10.3168/jds.S0022-0302(95)76869-2
  31. Wong, L.T. and W.K. Chow, 2001: Solar radiation model. Applied Energy, 69(3), 191-224. https://doi.org/10.1016/S0306-2619(01)00012-5