초록
본 연구는 기후변화에 따른 1990년대와 2000년대 봄철에 발생하는 산불의 공간적 분포가 크게 변화됨에 따라 현재 진행되고 있는 기후변화에 대응하기 위한 산불 발생확률모형의 변화를 비교하고, 2000년대 이후의 산불발생확률모형을 적용함으로써 우리나라에서의 기후 변화로 인한 산불발생 변화 예측을 현실적으로 반영하기 위해 수행하였다. 본 연구에서는 전국 특정지역의 일일 산불발생위험도 예측하기 위하여 산불발생과 관련이 있는 기상요소로 규명된 습도, 기온, 풍속 등 기상정보를 이용하여 기후변화를 반영한 2000년대의 전국 9개 권역의 봄철 기상요소에 의한 일일 산불발생위험지수(daily weather index, DWI)를 개발하였다. 첫 번째로 구체적인 개발방법은 전국 9개 광역지역별로 산불발생에 영향을 주는 기상요소를 규명하여 지역별로 산불발생의 유무를 종속변수(dependent variable)로 두고 산불발생 관련 기상요소들을 독립변수(independent variable)로 하여 로지스틱 회귀모형(logistic regression model)을 적용하여 산불발생확률을 추정하였다. 1970년대 이후 우리나라의 봄철 건조계절의 평균 기후장 분석 결과, 영남지역에서 기온은 상승하고 습도와 강수량의 감소폭이 큰 것으로 나타났다. 반면 강원지역은 모든 기상요소에서 변화폭이 비교적 낮아 산불발생 환경 측면에서 다른 지역보다 안정적인 것으로 사료된다. 향후 권역별 기후 변화 특성과 산불발생 경향을 비교함으로써 산불발생에 영향을 미치는 권역별 주요 기후인자를 선별을 수 있을 것으로 판단된다. 1990년대와 비교하여 2000년대의 산불의 패턴은 남북으로 분할되던 경향이 광역 대도시를 중심으로 인근 지역으로 확대되면서 백두대간을 중심으로 동서로 분할되는 경향을 보였다. 이러한 결과를 토대로 2000년대 봄철 기상에 의한 산불발생확률모형 개발을 수행하였다. 각 권역별 산불발생과 관련되는 기상요소로 경상남 북도, 전라남도 4개 권역은 최고기온, 상대습도, 실효습도, 평균풍속, 경기도와 충청남도 2개 권역은 최고기온, 상대습도, 평균풍속, 충청북도는 최고기온, 상대습도, 실효습도, 전라북도는 최고기온과 상대습도, 마지막으로 제주도는 최고기온과 평균풍속에서 95% 이상의 신뢰도에서 유의성이 있는 것으로 나타났다. 제주도를 제외한 모든 권역에서 99%의 신뢰수준에서 통계적으로 유의한 것으로 나타났으며, 표본내 예측력은 68.7~80.7%로 나타나 모형의 적합도는 매우 높은 것으로 나타났다. 개발된 모형은 현재 운영중인 산림청 국립산림과학원의 국가산불위험예보시스템에 반영하여 기후변화에 따른 2000년대의 산불발생위험을 정확히 예측하여 산불예방은 물론 진화자원의 효율적인 배치를 통해 시간과 인적 경제적 비용을 절감하고 산불피해를 최소화 할 수 있는 선택과 집중의 산불정책에 일조할 수 있을 것으로 기대한다.
This study was conducted to develop a forest fire occurrence model using meteorological characteristics for practical forecasting of forest fire danger rate by reflecting the climate change for the time period of 2000yrs. Forest fire in South Korea is highly influenced by humidity, wind speed, temperature, and precipitation. To effectively forecast forest fire occurrence, we developed a forest fire danger rating model using weather factors associated with forest fire in 2000yrs. Forest fire occurrence patterns were investigated statistically to develop a forest fire danger rating index using times series weather data sets collected from 76 meteorological observation centers. The data sets were used for 11 years from 2000 to 2010. Development of the national forest fire occurrence probability model used a logistic regression analysis with forest fire occurrence data and meteorological variables. Nine probability models for individual nine provinces including Jeju Island have been developed. The results of the statistical analysis show that the logistic models (p<0.05) strongly depends on the effective and relative humidity, temperature, wind speed, and rainfall. The results of verification showed that the probability of randomly selected fires ranges from 0.687 to 0.981, which represent a relatively high accuracy of the developed model. These findings may be beneficial to the policy makers in South Korea for the prevention of forest fires.