DOI QR코드

DOI QR Code

균일한 제올라이트 층이 형성된 글라스-울 제조에 관한 연구

Uniform Zeolite Layer Formation on Glass Fiber Surface

  • 이윤주 (한국세라믹기술원 에너지소재본부) ;
  • 이현명 (한국세라믹기술원 에너지소재본부) ;
  • 김영희 (한국세라믹기술원 에너지소재본부) ;
  • 권우택 (한국세라믹기술원 에너지소재본부) ;
  • 김수룡 (한국세라믹기술원 에너지소재본부) ;
  • 신동근 (한국세라믹기술원 융합연구사업단)
  • Lee, Yoonjoo (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Hyeon Myeong (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo-Teck (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo-Ryong (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-Geun (Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2016.10.27
  • 심사 : 2016.12.18
  • 발행 : 2016.12.31

초록

ZSM-5 crystals were grown by hydrothermal synthesis on glass fiber wool composed of silicate and CaO-MgO. The growth behavior of the zeolites was studied under various conditions, including using different Si/Al ratios and concentrations of the template. One-micrometer-tablet-shaped zeolites were grown uniformly using an Si/Al ratio of 60 (condition ZEO-B), and they showed strong bonding to the glass surface. In addition, the presence of Lewis and $Br{\o}nsted$ acid sites was confirmed in zeolites grown under low template condition ZEO-D. It is expected that a zeolite layer formed on the surface of glass wool works as a stable acid catalyst.

키워드

참고문헌

  1. C. S. Cundy and P. A. Cox, "The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time", Chem. Rev., 2003, 103, 663-701. https://doi.org/10.1021/cr020060i
  2. A. M. Akimkhan, http://www.intechopen.com/books/ionexchange-technologies/structural-and-ion-exchange-propertiesof-natural-zeolite
  3. M. E. Davis, "Introduction to Large Pore Molecular Sieves", Catal. Today, 1994, 19, 1-6. https://doi.org/10.1016/0920-5861(94)85001-1
  4. I. Mohmood, C. B. Lopes, I. Lopes, I. Ahmad, A. C. Duarte, and E. Pereira, "Nanoscale Materials and Their Use in Water Contaminants Removal - A Review", Environ. Sci. Pollut. Res., 2013, 20, 1239-1260. https://doi.org/10.1007/s11356-012-1415-x
  5. B. Li, Y. Duan, D. Luebke, and B. Morreale, "Advances in $CO_2$ Capture Technology: A Patent Review", Appl. Energy, 2013, 102, 1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009
  6. M. Hara, K. Nakajima, and K. Kamata, "Recent Progress in the Development of Solid Catalysts for Biomass Conversion into High Value-added Chemicals", Sci. Technol. Adv. Mater., 2015, 16, 034903-034925. https://doi.org/10.1088/1468-6996/16/3/034903
  7. P. Misaelides, "Application of Natural Zeolites in Environmental Remediation: A Short Review", Micropore. Mesopore. Materials, 2011, 114, 15-18.
  8. U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, and K. P. Lillerud, "Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivey", Angew. Chem. Int. Ed., 2012, 51, 5810-5831. https://doi.org/10.1002/anie.201103657
  9. X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, and H. Xiao, "Acidic ZSM-5 Zeolite-coated Long Period Fiber Grating for Optical Sensing of Ammonia", J. Mater. Chem., 2011, 21, 181-186. https://doi.org/10.1039/C0JM02523B
  10. X. Xu, W. Yang, J. Liu, L. Lin, N. Stroh, and H. Brunner, "Synthesis of NaA Zeolite Membrane on a Ceramic Hollow Fiber", J. Membr. Sci., 2004, 229, 81-85. https://doi.org/10.1016/j.memsci.2003.10.015
  11. X. Shu, X. Wang, Q. Kong, X. Gu, and N. Xu, "High-flux MFI Zeolite Membrane Supported on YSZ Hollow Fiber for Separation of Ethanol/water", Ind. Eng. Chem. Res., 2012, 51, 12073-12080. https://doi.org/10.1021/ie301087u
  12. K. Shen, W. Qian, N. Wang, C. Su, and F. Wei, "Fabrication of c-axis Oriented ZSM-5 Hollow Fibers Based on an in situ Solid-solid Transformation Mechanism", J. Am. Chem. Soc., 2013, 135, 15322-15325. https://doi.org/10.1021/ja408624x
  13. B. Louis, C. Tezel, L. Kiwi-Minsker, and A. Renken, "Synthesis of Structured Filamentous Zeolite Materials via ZSM-5 Coating of Glass Fibrous Supports", Catalysis Today, 2001, 69, 365-370. https://doi.org/10.1016/S0920-5861(01)00393-5
  14. R. M. Mohamed, H. M. Aly, M. F. El-Shahat, and I. A. Ibrahim, "Effect of the Silica Source on the Crystallinity of Nanosized ZSM Zeolite", Micropore. Mesopore. Materials, 2005, 79, 7-12. https://doi.org/10.1016/j.micromeso.2004.10.031
  15. L. Shirazi, E. Jamshidi, and M. R. Ghasemi, "The Effect of Si/Al Ratio of ZSM-5 Zeolite on Its Morphology Acidity and Crystal Size", Cryst. Res. Technol., 2008, 43, 1300-1306. https://doi.org/10.1002/crat.200800149
  16. L. Ding and Y. Zheng, "Nanocrystalline Zeolite Beta: The Effect of Template Agent on Crstal Size", Mater. Res. Bull., 2007, 42, 584-590. https://doi.org/10.1016/j.materresbull.2006.06.025
  17. A. Petushkov, S. Yoon, and S. C. Larsen, "Synthesis of Hierarchical Nanocrystalline ZSM-5 with Controlled Particle Size and Mesoporosity", Micropore. Mesopore. Materials, 2011, 137, 92-100. https://doi.org/10.1016/j.micromeso.2010.09.001
  18. M. Shelef, "On the Mechanism of Nitric Oxide Decomposition over Cu-ZSM-5", Catal. Lett., 1992, 15, 305-310. https://doi.org/10.1007/BF00765275
  19. R. Joyner and M. Stockenhuber, "Preparation, Characterization, and Performance of Fe-ZSM-5 Catalysts", J. Phys. Chem. B, 1999, 103, 5963-5976. https://doi.org/10.1021/jp990978m
  20. S. P. Yuan, J. G. Wang, Y. W. Li, and H. Jiao, "Bronsted Acidity of Isomorphously Substituted ZSM-5 by B, Al, Ga, and Fe. Density Functional Investigations", J. Phys. Chem. A, 2002, 106, 8167-8172. https://doi.org/10.1021/jp025792t
  21. C. T. W. Chu and C. D. Chang, "Isomorphous Substitution in Zeolite Frameworks. 1. Acidity of Surface Hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5", J. Phys. Chem., 1985, 89, 1569-1571. https://doi.org/10.1021/j100255a005
  22. J. Hedlund, S. Mintova, and J. Sterte, "Controlling the Preferred Orientation in Silicalite-1 Films Synthesized by Seeding", Micropore. Mesopore. Materials, 1999, 28, 185-194. https://doi.org/10.1016/S1387-1811(98)00300-X
  23. M. Zhou, A. A. Rownaghi, and J. Hedlund, "Synthesis of Mesoporous ZSM-5 Zeolite Crystals by Conventional Hydrothermal Treatment", RSC Adv., 2013, 3, 15596-15599. https://doi.org/10.1039/c3ra42199f
  24. E. L. Wu, S. L. Lawton, D. H. Olson, A. C. Rohrman, and G. T. Kokotailo, "ZSM-5-type Materials. Factors Affecting Crystal Symmetry", J. Phys. Chem., 1979, 83, 2777-2781. https://doi.org/10.1021/j100484a019
  25. M. Liu, J. Li, W. Jia, M. Qin, Y. Wang, K. Tong, H. Chen, and Z. Zhu, "Seed-induced Synthesis of Hierarchical ZSM-5 Nanosheets in the Presence of Hexadecyl Trimethyl Ammonium Bromide", RSC Adv., 2003, 9, 9237-9240.
  26. Y. Tao, H. Kanoh, and K. Kaneko, "ZSM-5 Monolith of Uniform Mesoporous Channels", J. Am. Chem. Soc., 2003, 125, 6044-6045. https://doi.org/10.1021/ja0299405
  27. L. Shirazi, E. Jamshidi, and M. R. Ghasemi, "The Effect of Si/Al Ratio of ZSM-5 Zeolite on Its Morphology Acidity and Crystal Size", Cryst. Res. Technol., 2008, 43, 1300-1306. https://doi.org/10.1002/crat.200800149