DOI QR코드

DOI QR Code

국내 유통중인 원료물질 및 공정부산물의 물리화학적 및 방사선적 특성 데이터베이스 구축

Establishment of the Physicochemical and Radiological Database of Raw Materials and By-Products in Domestic Distribution

  • 투고 : 2016.06.01
  • 심사 : 2016.07.28
  • 발행 : 2016.12.31

초록

국내 유통중인 다양한 형태의 원료물질 또는 공정부산물들에 대한 물리적, 화학적 및 방사선적 특성을 평가하기 위해 약 220여 개, 총 16 종의 표본 시료를 선정하였다. 해당 시료들에 대하여 $LaBr_3$ 섬광검출기를 이용한 에너지 스펙트럼 측정과 에너지 분산형 X-선 형광 분광기를 이용한 U, Th, K와 물질의 주요 성분 분석을 수행하였다. 그리고 HPGe 검출기를 이용하여 $^{234}Th$, $^{234m}Pa$$^{214}Bi$ 등의 우라늄 붕괴계열 핵종들과 $^{228}Ac$, $^{212}Pb$$^{208}Tl$ 등의 토륨 붕괴계열 핵종들 그리고 $^{40}K$ 등의 방사능농도를 분석함으로써 원료물질 및 공정부산물의 특성에 관한 기초자료를 수집하였다. 추가적으로 ROI구간별 계수율과 원소성분함량, 방사능농도와 같은 특성변수들 간의 상관관계를 분석함으로써 스크리닝 장비를 이용한 방사능 농도 분포 유추 가능성을 평가하였다. 본 연구에서 구축된 특성 데이터베이스는 천연방사성핵종 분석을 위한 절차 및 방법을 수립하는데 유용한 정보를 제공하고, 천연방사성핵종 분석에 대한 정확성 및 재현성을 향상시킬 수 있을 것으로 판단된다.

To evaluate the physicochemical and radiological properties of raw materials and by-products in domestic distribution, about 220 samples with 16 species were prepared. We measured the energy spectrum and the chemical content, such as U, Th, and K, using a $LaBr_3$ scintillation detector and ED-XRF. In addition, HPGe detector was used to analyze the radioac-tivity of $^{234}Th$, $^{234}mPa$, and $^{214}Bi$ in uranium decay series and $^{228}Ac$, $^{212}Pb$, and $^{208}Tl$ in thorium decay series, and $^{40}K$. The correlation between characteristic variables, such as the count rate in several ROIs, chemical content, and radioactivity, was assessed to infer the radioactivity of natural radionuclides through a rapid screening method. Based on the results, a characteristic database for raw material and by-product in domestic distribution was established and it will provide useful information in the analysis procedure and improve the accuracy and reproducibility in the analysis of natural radionuclides.

키워드

참고문헌

  1. Nuclear Safety and Security Commission, Enforcement Ordinances of the Act on Safety Control of Radioactive Rays around Living Environment, Nuclear Security and Safety Commission (Radiation Safety Division), Law No. 13542 (2012).
  2. H. Al-Sulaiti, N. Alkhomashi, N. Al-Dahan, M. Al-Sosari, D.A. Bradley, S. Bukhari, M. Matthews, P.H. Regan, and T. Santawamaitre, "Determination of the natural radioactivity in Qatarian building materials using high-resolution gamma-ray spectrometry", Nucl. Inst. and Meth. in phys. Res., A652, 915-919 (2011).
  3. J.L. Mas, M. Villa, S. Hurtado, and R. Garcia-Tenorio, "Determination of trace element concentrations and stable lead, uranium and thorium isotope ratios by quadruple-ICP-MS in NORM and NORM-polluted sample leachates", J. Hazard. Mater., Vol. 205-206, 198-207 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.058
  4. M.H. Baik, M.J. Kang, Y.S. Cho, and J.T. Jeong, "A comparative study for the determination of uranium and uranium isotopes in granitic groundwater", J. Radioanal. Nucl. Chem., Vol. 304, 9-14 (2015). https://doi.org/10.1007/s10967-014-3699-4
  5. Saidou, Francois Bochuda, Jean-Pascal Laedermanna, M.G. Kwato Njockb, and Pascal Froidevauxa, "Comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys", Appl. Radiat. Isot., vol. 66, 215-222 (2008). https://doi.org/10.1016/j.apradiso.2007.07.034
  6. G.H. Chung, G.S. Choi, M.J. Kang, Y.H. Jo, Y.Y. Ji, J.M. Lim, H.C. Kim, M Jang, C.J. Kim, and D.W. Park , Development of methods for the determination of $^{235,238}$U, $^{226}$Ra, $^{232}$Th and $^{40}$K in raw materials or by-products, KAERI-CR-529 (2013).
  7. Y.Y. Ji, G.H. Chung, J.M. Lim, H.C. Kim, Y.G. Koh, M.J. Kang, M Jang, Y.H. Jo, G.S. Choi, H Lee, Y.H. Jung, and A.R. Lim, Development of analytical procedures and method validation for quantification of natural radionuclides in raw materials or by-products. Korea Atomic Energy Research Institute, KAERI-CR-576 (2014).
  8. Y.Y. Ji, K.H. Chung, J.M. Lim, C.J. Kim, M Jang, M.J. Kang, and S.T. Park. "Analytical evaluation of natural radionuclides and their radioactive equilibrium in raw materials and by-products", Appl. Radiat. Isot., Vol. 97, 1-7 (2015). https://doi.org/10.1016/j.apradiso.2014.11.013
  9. B.A. Almayahi, A.A. Tajuddin, and M.S. Jaafar, "Effect of the natural radioactivity concentrations and $^{226}$Ra/$^{238}$U disequilibrium on cancer diseases in Penang", Malaysia. Radiat. Phys. Chem., Vol. 81, 1547-1558 (2012). https://doi.org/10.1016/j.radphyschem.2012.03.018
  10. U.S. Environmental Protection Agency, "Evaluation of EPA's Guidelines for technologically Enhanced Naturally Occurring Radioactive materials(TENORM)", 402-R-00-01 (2000).
  11. U.S. Environmental Protection Agency. April 11 2008. "TENORM Sources". EPA Web. Accessed Dec. 23 2015. Available from: https://www.epa.gov/radiation/technologically-enhanced-naturally-occurring-radioactive-materials-tenorm.
  12. R.J. Guimond and S.T. Windham, "Radioactivity distribution in phosphate products, by-products, effluents, and wastes", EPA, Technical note/CSD-75-3 (1975).
  13. B. U. Chang, Y.J. Kim, S.M. Koh, and H.W. Chang, "Natural Radioactivity of Coal and Fly Ash in Several Coal-Fired Plant in Korea", J. of the Geological Society of Korea., 44(4), 479-488 (2008).
  14. B.U. Chang, J.W. Kwon, K.H. Kim, D.J. Kim, and Y.J. Kim, Nationwide surveillance on the environmental radiation, Korea Institute of Nuclear Safety Research Report, 171-181, KINS/RR-937/2012 (2012).
  15. International Atomic Energy Agency, Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation, IAEA Technical Report Series No. 419, IAEA, Vienna (2003).
  16. J.T. Jeong, M.H. Baik, C.K. Park, T.J. Park, N.Y. Ko, and K.H. Yoon. "A Basic Study on the Radiological Characteristics and Disposal Methods of NORM Wastes". JNFCWT., Vol. 12, 199-215 (2014).
  17. P. Menge, G. Gautier, A. lltis, C. Rozsa, and V.Solovyev, "Performance of large lanthanum bromide scintillators", Nucl. Inst. and Meth. in Phys. Res., A, 579(1), 6-10 (2007). https://doi.org/10.1016/j.nima.2007.04.002
  18. B.D. Milbrath, R.C. Runkle, T.W. Hossbach, W.R. Kaye, E.A. Lepel, B.S. McDonald, and L.E. Smith, "Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements", Nucl. Inst. and Meth. in phys. Res., A, 547, 504-510 (2005). https://doi.org/10.1016/j.nima.2004.11.054
  19. H.L. Beck, W.J. Condon, and W.M. Lowder. "Spectrometric techniques for measuring environmental gamma radiation", HASL-150 (1964).
  20. M.J. dos Anjosa, R.T. Lopes, E.F.O. de Jesus, J.T. Assis, R. Cesareo, and C.A.A. Barradas, "Quantitative analysis of metals in soil using X-ray fluorescence", SPECTROCHIM ACTA B., Vol. 55(7), 1189-1194 (2000). https://doi.org/10.1016/S0584-8547(00)00165-8
  21. J.F. Boyle, "Rapid elemental analysis of sediment samples by isotope source XRF", Journal of Paleolimnolog., Vol. 23, 213-221(2000). https://doi.org/10.1023/A:1008053503694