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Abstract

This note discusses the inter-loss time ofan M/G/1/1 queuing system. The inter-loss time is defined as the time duration

between two consecutive losses of arriving customers. In this study, we present the explicit Laplace transform of the inter-loss

time distribution of an M/G/1/1 queuing system.
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1. Introduction

Ferrante [1] has recently investigated the in-

ter-loss time for an M/M/1/1 Erlang loss model

to solve the location problem of the ambulance

in the Emergency Medical Systems (EMS). In

EMS, each ambulance behaves as an M/M/1/1

queueing system because its client cannot wait

for an emergency service. The information on the

inter-loss not only has an influence on the per-

formance measures of the system but also im-

proves the operation efficiency and the quality

of the emergency service.

Erlang loss model eliminates all delays by set-
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ting the number of the buffers to the number of

servers. In this case, the so-called Erlang-B for-

mula characterizes the loss (blocking) probability

for the associated system. The serendipity is the

well-known invariance property of the loss prob-

ability with respect to service time distribution.

This accommodates general, rather than ex-

ponential, service time distributions. The objective

of this note is to extend the work of Ferrante

[1] in the general service time setting.

We consider an M/G/1/1 queueing system hav-

ing following features. Customers arrive at the

system, according to Poisson process. They are

served by a single server. It is assumed that there

is no waiting space in the system. Therefore, if

a customer arrives in the system while a server

is busy, he/she is blocked and lost. The inter-loss

time is defined as the length of the time duration

between two consecutive customer losses. In this

work, we present that the Laplace transform (LT)

of the inter-loss time in the M/G/1/1 queue.

Throughout this note,  , the LT of any con-

tinuous random variable (RV), is defined as

  


∞
 Pr.

2. Preliminaries

In this section, we carry out the preliminary

analysis for the derivation of the main result. Let

 and  denote the inter-arrival time and the

service time, respectively.  has the exponential

distribution having a mean   .  is the generally

distributed RV. We assume that  and  are mu-

tually independent. Let us define  and  

as the cumulative density function (CDF) and its

LT, respectively. Let   denote length of time

from the point a busy period begins to the point

the next loss occurs given that the length of the

busy period is . Let  denote the unconditional

length of time from the point a busy period be-

gins to the point the next loss occurs. Note that,

since only one customer is served per busy peri-

od,  is equal to the length of the busy period.

Thus, we have

Pr        


∞Pr        (1)

We must state here that, according to the range

of  , Pr    in (1) is expressed as
two different forms. If  ,Pr   
is expressed as

Pr          Pr         ,
 (2)

In other words,   is equal to  by the mem-

oryless property of the exponential inter-arrival

time as long as   (see [Figure 1(a)]). On the

other hand, if  , the next loss does not occur

during the currently ongoing busy period. At the

point of the next customer arrival,   is equal

to  (see [Figure 1(b)]). Conditioning on the in-

ter-arrival time of the next customer, Pr  
 is represented as

Pr   


  

  Pr 
Pr

 
  

  Pr 
   

(3)

Let 
  and 

 denote the LT of  

and that of  , respectively. From the probability
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(a)   (b)  

[Figure 1] Sample Path Examples

expression for   in (2) and (3), 
  is ob-

tained as follows :


  





 Pr   




∞
  Pr   




   

 

(4)

Remark 1: The detailed derivation of (4) is in

the <Appendix A>.

Furthermore, taking the LT of (1) results in


 

  

∞
 

  

∞

Pr   




∞

 

(5)

Substituting (4) into (5), we have


 



∞



    

 




 

 

which leads to


  

  (6)

3. Main results

This section deals with the main result, the LT

of the inter-loss time in the M/G/1/1 queue. Let

 denote the remaining service time at the point

the current loss occurs. A CDF and its LT is de-

noted by  and 
 . By Green’s theorem[2],

we have

   
Pr 



and


  



∞
   

 

(7)

Remark 2: (7) shows that  is stochastically

equivalent to the remaining time of the ongoing

service at the arbitrary point. For a proof, see

Appendix B.

Let  denote the conditional inter-loss time

given that the current loss occurs when the

remaining service time is  and  denote the

inter-loss time in the M/G/1/1 queue. Then,

Pr  is given by

Pr 




∞ Pr  (8)
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(a)   (b)  

[Figure 2] Sample Path Examples

Similar to (2) and (3), Pr  in (8)
has two different expressions, according to the

range of  . In case that   (see [Figure 2(a)]),

Pr  is expressed as

Pr 
Pr   (9)

Meanwhile, for   (see [Figure 2(b)]), Pr
 is represented as

Pr 


  

  Pr 
Pr

 
  

  

Pr  

(10)

Let   and  denote the LT of 

and the LT of , respectively. By (9) and (10),

  is obtained as follows :

  




  Pr 




∞
  Pr 




    

 

(11)

Remark 3: The detailed derivation of (11) is

in the <Appendix A>.

Taking the LT of (8), we have

 
  

∞
 

  

∞

Pr 




∞
 

(12)

Utilizing (6) and (11) in (12), we have

   


∞



       

 

 


   



∞
   






 

 


       

     

 
 




    


   




(13)

which leads to      , where

   . Note that   represents the mean

number of lost customers during a unit time, i.e.

the loss rate of the M/G/1/1 queueing system.

Then the fraction of customers that arrive to find

the server busy, i.e., the loss probability of the

M/G/1/1 queueing system, is given by
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Pr{an arriving customer is lost} 


(14)

It is interesting to notice that this, in (14), the

probability does not depend on the type of the

service time distribution and it depends only on

its mean; that is, the Erlang B-formula holds not

only for the exponential service time distribution

but also for the arbitrary service time distribution

in case that the number of the buffer is set to 1.
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<Appendix A> The Derivation of Both (4) and (11)

We first derive (4) in detail as follows:


  

  



  Pr   
  

∞
  Pr   


  



   
  

∞
   

  

   Pr   



       
  

∞
 

    

∞
  Pr 



       
  

∞
 

  

∞
      Pr 



       
  

∞
      

  

∞
  Pr 



          
  

∞
   





      
    







    

 

(A.1)

In (A.1), replacing 
  with   and   with , we can derive (11).

<Appendix B> The proof of Remark 2

Let  denote the remaining service time at time . Let us define the following probabilities:

   Pr   and   Pr .We define ′  and   as the condi-
tional probability of the form:  ′   Pr          and   

Pr    , where   is the number of the losses which occur during
the interval  . If it is satisfied that    ′ , we prove Remark 2. Let   be the
number of arrivals during the interval  . We have

  Pr     
Pr       
Pr     
Pr       

Pr Pr   
Pr Pr      

Pr    
Pr      

Pr    
Pr   Pr     

(B.1)
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Since  is determined by both the past arrivals and services which occur during the interval

 ,   and  are mutually independent. In other words, the following relation holds:

Pr     Pr    Pr   .

Therefore, (B.1) is rewritten as   Pr    ′ .


