DOI QR코드

DOI QR Code

Metabolic engineering of the genus Clostridium for butanol production

Clostridium 속 미생물 대사공학을 통한 butanol 생산

  • Woo, Ji Eun (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Gyeongsang National University) ;
  • Kim, Minji (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Gyeongsang National University) ;
  • Noh, Hyeon Ji (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Gyeongsang National University) ;
  • Hwang, NuRi (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Gyeongsang National University) ;
  • Kim, Jin-Hyo (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Gyeongsang National University) ;
  • Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Bioinformatics Research Center, BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, KAIST) ;
  • Jang, Yu-Sin (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Gyeongsang National University)
  • 우지은 (경상대학교 농업생명과학원) ;
  • 김민지 (경상대학교 농업생명과학원) ;
  • 노현지 (경상대학교 농업생명과학원) ;
  • 황누리 (경상대학교 농업생명과학원) ;
  • 김진효 (경상대학교 농업생명과학원) ;
  • 이상엽 (한국과학기술원 생명화학공학과) ;
  • 장유신 (경상대학교 농업생명과학원)
  • Received : 2016.09.23
  • Accepted : 2016.10.12
  • Published : 2016.12.31

Abstract

Clostridium is a genus of Gram-positive, rod shape, spore-forming obligate anaerobe. Recently, Clostridium has been attracted as a host for bio-based chemical production, due to its diversity of substrate utilization and the production ability for metabolites which can be used as a building block for chemical production. Especially, butanol produced from Clostridium has been considered as an alternative fuel. As a transportation fuel, butanol has a higher energy density and lower hygroscopicity compared to ethanol, the first generation biofuel. Recently, metabolic engineering of Clostridium has been massively conducted for butanol production. In this study, the metabolic engineering strategy of Clostridium for butanol production has been reviewed with a brief perspective.

Clostridium은 그람양성, 장간균으로 포자를 형성하는 절대혐기성 균이다. Clostridium은 다양한 기질을 이용할 수 있고, 유용 화합물 합성을 위한 building block으로 사용 가능한 대사산물을 생산할 수 있어, 최근 많은 관심을 끌고 있다. 특히, Clostridium을 이용하여 생산된 butanol은 차세대 연료로써 고려되고 있다. 수송용 연료로써 butanol은 1세대 바이오연료인 ethanol과 비교하여 더 높은 에너지 밀도와 낮은 흡습성을 보이는 것으로 알려져 있다. 최근, butanol 생산을 위한 Clostridium 대사공학이 활발히 진행되어 상당한 진보를 보이고 있다. 본 연구에서는 butanol 생산을 위한 Clostridium의 대사공학 전략을 리뷰하고, 관련 분야에 대해서 간략히 전망하였다.

Keywords

References

  1. Chen, C.T. and Liao, J.C. 2016. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol. Lett. 363, fnw020. https://doi.org/10.1093/femsle/fnw020
  2. Cho, C., Jang, Y.S., Moon, H.G., Lee, J., and Lee, S.Y. 2015. Metabolic engineering of clostridia for the production of chemicals. Biofuels Bioprod. Bioref. 9, 211-225. https://doi.org/10.1002/bbb.1531
  3. Cooksley, C.M., Zhang, Y., Wang, H., Redl, S., Winzer, K., and Minton, N.P. 2012. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab. Eng. 14, 630-641. https://doi.org/10.1016/j.ymben.2012.09.001
  4. Friedl, A. 2016. Downstream process options for the ABE fermentation. FEMS Microbiol. Lett. 363, fnw073. https://doi.org/10.1093/femsle/fnw073
  5. Green, E.M., Boynton, Z.L., Harris, L.M., Rudolph, F.B., Papoutsakis, E.T., and Bennett, G.N. 1996. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142, 2079-2086. https://doi.org/10.1099/13500872-142-8-2079
  6. Harris, L.M., Desai, R.P., Welker, N.E., and Papoutsakis, E.T. 2000. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67, 1-11. https://doi.org/10.1002/(SICI)1097-0290(20000105)67:1<1::AID-BIT1>3.0.CO;2-G
  7. Hou, X., Peng, W., Xiong, L., Huang, C., Chen, X., Chen, X., and Zhang, W. 2013. Engineering Clostridium acetobutylicum for alcohol production. J. Biotechnol. 166, 25-33. https://doi.org/10.1016/j.jbiotec.2013.04.013
  8. Jang, Y.S., Han, M.J., Lee, J., Im, J.A., Lee, Y.H., Papoutsakis, E.T., Bennett, G., and Lee, S.Y. 2014a. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Appl. Microbiol. Biotechnol. 98, 5105-5115. https://doi.org/10.1007/s00253-014-5738-z
  9. Jang, Y.S., Im, J.A., Choi, S.Y., Lee, J.I., and Lee, S.Y. 2014b. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab. Eng. 23, 165-174. https://doi.org/10.1016/j.ymben.2014.03.004
  10. Jang, Y.S. and Lee, S.Y. 2015. Recent advances in biobutanol production. Ind. Biotechnol. 11, 316-321. https://doi.org/10.1089/ind.2015.0023
  11. Jang, Y.S., Lee, J.Y., Lee, J., Park, J.H., Im, J.A., Eom, M.H., Lee, J., Lee, S.H., Song, H., Cho, J.H., et al. 2012. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3, e00314-12.
  12. Jones, D.T. and Woods, D.R. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484-524.
  13. Kim, S., Jang, Y.S., Ha, S.C., Ahn, J.W., Kim, E.J., Lim, J.H., Cho, C., Ryu, Y.S., Lee, S.K., Lee, S.Y., et al. 2015. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat. Commun. 6, 8410. https://doi.org/10.1038/ncomms9410
  14. Kopke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., Ehrenreich, A., Liebl, W., Gottschalk, G., and Durre, P. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107, 13087-13092. https://doi.org/10.1073/pnas.1004716107
  15. Kuit, W., Minton, N.P., Lopez-Contreras, A.M., and Eggink, G. 2012. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl. Microbiol. Biotechnol. 94, 729-741. https://doi.org/10.1007/s00253-011-3848-4
  16. Lee, J., Jang, Y.S., Han, M.J., Kim, J.Y., and Lee, S.Y. 2016. Deciphering Clostridium tyrobutyricum metabolism based on the whole-genome sequence and proteome analyses. mBio 7, e00743-16.
  17. Li, S.Y., Chiang, C.J., Tseng, I.T., He, C.R., and Chao, Y.P. 2016. Bioreactors and in situ product recovery techniques for acetonebutanol-ethanol fermentation. FEMS Microbiol. Lett. 363, fnw107. https://doi.org/10.1093/femsle/fnw107
  18. Liao, C., Seo, S.O., and Lu, T. 2016. System-level modeling of acetone-butanol-ethanol fermentation. FEMS Microbiol. Lett. 363, fnw074. https://doi.org/10.1093/femsle/fnw074
  19. Little, G.T., Winzer, K., and Minton, N.P. 2015. Genome sequence of the solvent-producing Clostridium beijerinckii strain 59B, isolated from staffordshire garden soil. Genome Announc. 3, e00108-15.
  20. Liu, X., Zhu, Y., and Yang, S.T. 2006. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol. Prog. 22, 1265-1275.
  21. Moon, H.G., Jang, Y.S., Cho, C., Lee, J., Binkley, R., and Lee, S.Y. 2016. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 363, fnw001.
  22. Ventura, J.R.S., Hu, H., and Jahng, D. 2013. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Appl. Microbiol. Biotechnol. 97, 7505-7516. https://doi.org/10.1007/s00253-013-5075-7
  23. Yu, M.R., Du, Y.M., Jiang, W.Y., Chang, W.L., Yang, S.T., and Tang, I.C. 2012. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl. Microbiol. Biotechnol. 93, 881-889. https://doi.org/10.1007/s00253-011-3736-y
  24. Yu, M.R., Zhang, Y.L., Tang, I.C., and Yang, S.T. 2011. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13, 373-382. https://doi.org/10.1016/j.ymben.2011.04.002

Cited by

  1. Recent advances on bio-alcohol production from syngas using microorganisms vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.052
  2. Metabolic Engineering Strategies of Clostridia for Butyric Acid Production vol.32, pp.3, 2017, https://doi.org/10.7841/ksbbj.2017.32.3.169