DOI QR코드

DOI QR Code

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Sonn, Yeon-Kyu (National Institute of Agricultural Sciences) ;
  • Weon, Hang-Yeon (National Institute of Agricultural Sciences) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Dae-Ho (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Choi, Yong-Jo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Sang-Dae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ok, Yong Sik (Biochar Research Center, Department of Biological Environment, Kangwon National University) ;
  • Lee, Young Han (Gyeongsangnam-do Agricultural Research and Extension Services)
  • 투고 : 2016.06.13
  • 심사 : 2016.11.23
  • 발행 : 2016.12.31

초록

Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

키워드

참고문헌

  1. An, N.H., J.H. Cho, J.L. Shin, J.H. Nam, H.S. Kim, and S.C. Kim. 2015. Effects of organic matter application on soil microbial community in a newly reclaimed soil. Korean J. Org. Agric. 23:767-779. https://doi.org/10.11625/KJOA.2015.23.4.767
  2. Balser, T., K.K. Treseder, and M. Ekenler. 2005. Usinglipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. https://doi.org/10.1016/j.soilbio.2004.08.019
  3. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  4. Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. https://doi.org/10.1016/j.soilbio.2005.11.011
  5. Davinic, M., Fultz, L.J., Acosta-Martinez, V., Calderon, F.J., Cox, S.B., Dowd, S.E., Allen, V.G., Zak, J.C., and Moore-Kucera, J., 2012. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biology and Biochemistry 46, 63-72. https://doi.org/10.1016/j.soilbio.2011.11.012
  6. Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
  7. Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
  8. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.
  9. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  10. Jones, R.T., M.S. Robeson, C.L. Lauber, M. Hamady, R. Knight, and N. Fierer. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3:442-453. https://doi.org/10.1038/ismej.2008.127
  11. Kim, E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227. https://doi.org/10.7745/KJSSF.2011.44.2.221
  12. Kim, L.Y., H.J. Cho, and Han, K. H. 2004. Changes of Physical properties of soils by organic material application in farm land. Korean. J. Soil Sci. Fert. 37(5):304-314.
  13. Kim, M.K., Y.K. Sonn, H.Y. Weon, J.Y. Heo, J.S. Jeong, Y.J. Choi, S.D. Lee, H.Y. Shin, Y.S. Ok, and Y.H. Lee. 2015. Impacts of soil texture on microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 48:81-86. https://doi.org/10.7745/KJSSF.2015.48.2.081
  14. Kim, M.K., Y.S. Ok, J.Y. Heo, S.L. Choi, S.D. Lee, H.Y. Shin, J.H. Kim, H.R. Kim, and Y.H. Lee. 2014. Analysis of soil microbial communities formed by different upland fields in Gyeongnam Province. Korean J. Soil Sci. Fert. 47:100-106. https://doi.org/10.7745/KJSSF.2014.47.2.100
  15. Kim, P.J., D.Y. Chung, B.L. Lee, and K.Y. Kim. 1997.Hydraulic Conductivity in Multi-layered Soil amended with Cow Manure Compost. J. KoSES 2(3):59-67.
  16. Kim, S.C., Y.K. Hong, and J.E. Yang. 2014. Soil management by using the evaluation method of soil quality. Expert workshop at Korean Soc. Soil Sci. Fert. 80-104.
  17. KOSIS. 2016. KOrean Statistical Information Service (http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parentId=F#SubCont).
  18. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  19. Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. https://doi.org/10.3839/jksabc.2011.067
  20. Lee, Y.H. and S.T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:492-497. https://doi.org/10.7745/KJSSF.2011.44.3.492
  21. Lee, Y.H., B.K. Ahn, S.T. Lee, M.A. Shin, E.S. Kim, W.D. Song, and Y.K. Sonn. 2011. Impacts of soil type on microbial community from paddy soils in gyeongnam province. Korean J. Soil Sci. Fert. 44(6):1164-1168. https://doi.org/10.7745/KJSSF.2011.44.6.1164
  22. Lee, Y.H., S.M. Lee, J.K. Sung, D.H. Choi, H.M. Kim, and G.H. Ryu. 2006. Development of soil management technique in organic rice cultivation. Korean J. Organic Agri. 14(2):205-217.
  23. Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
  24. Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Biol. 46:312-318. https://doi.org/10.1016/j.ejsobi.2010.06.001
  25. NIAST (National Institute of Agricultural Science and Technology). 2010a. Methods of soil chemical analysis. Suwon, Korea.
  26. Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. https://doi.org/10.1023/A:1004379404220
  27. Park, J.H., M.K. Kim, B.J. Lee, H.R. Kim, Y.H. Lee, and Y.S. Cho. 2014. Diversity of soil microbial communities formed by different light penetrations in forests. Korean J. Soil Sci. Fert. 47:496-499. https://doi.org/10.7745/KJSSF.2014.47.6.496
  28. Pascual, J.A., C. Garcia, T. Hernandez, J.L. Moreno, and M. Ros. 2000. Soil microbial activity as a biomarker of degredation and remedation process. Soil Biol. Biochem. 32:1877-1883. https://doi.org/10.1016/S0038-0717(00)00161-9
  29. Peacock, A.D., M.D. Mullen, D.B. Ringelberg, D.D. Tyler, D.B. Hedrick, P.M. Gale, and D.C. White. 2001. Soil microbial community response to dairy manure or ammonium nitrate application. Soil Biol. Biochem. 33:1011-1019. https://doi.org/10.1016/S0038-0717(01)00004-9
  30. Recel, M.R. 1994. International seminar on the use of microbio and organic fertilizers in agriculture production. RDA & FFTC.
  31. Rilling, M.C., E.R. Lutgen, P.W. Ramsey, J.N. Klironomos, and J.E. Gannon. 2005. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251-259. https://doi.org/10.1016/j.pedobi.2004.11.003
  32. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  33. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  34. Wilson, G.W.T., C.W. Rice, M.C. Rillig, A. Springer, and D.C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol. Lett. 12:452-I461. https://doi.org/10.1111/j.1461-0248.2009.01303.x
  35. Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from aruscular mycorrhizal fungi. Soil Sci. 161(9):575-596. https://doi.org/10.1097/00010694-199609000-00003
  36. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. https://doi.org/10.1016/S0045-6535(97)00155-0
  37. Zhang, Y.S., G.J. Lee, J.H. Joo, J.T. Lee, J.H. Ahn, and C.S. Park. 2007. Effect of winter rye cultivation to improve soil fertility and crop production in alpine upland in Korea. Kor. J. Environ. Agric. 26:300-305. https://doi.org/10.5338/KJEA.2007.26.4.300