DOI QR코드

DOI QR Code

Device Personalization Methods for Enhancing Packet Delay in Small-cells based Internet of Things

스몰셀 기반 사물인터넷에서 패킷 지연시간 향상을 위한 디바이스 개인화 방법

  • Lee, ByungBog (IoT Research Division, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Han, Wang Seok (LOTTE Data Communication Div. Executive) ;
  • Kim, Se-Jin (Dept. of Computer Science and Statistics, Chosun Univ.)
  • Received : 2016.08.21
  • Accepted : 2016.10.30
  • Published : 2016.12.31

Abstract

Recently, with greatly improving the wireless communication technology, new services are created using smart sensors, i.e., machine-to-machine (M2M) and Internet of Things (IoT). In this paper, we propose a novel IoT device (IoTD) personalization method that adopt Small-cell Access Points (SAPs) to control IoTDs using user equipments (UEs), e.g., smart phones and tablet PC, from service users. First, we introduce a system architecture that consists of UE, IoTD, and SAP and propose the IoTD personalization method with two procedures, i.e., IoTD profile registration procedure and IoTD control procedure. Finally, through simulations, we evaluated the system performance of the proposed scheme and it is shown that the proposed scheme outperforms the conventional scheme in terms of the packet delay, packet loss probability, and normalized throughput.

최근 무선통신 기술이 급속도로 발전하면서 스마트 센서를 이용한 사물통신 (Machine-to-Machine, M2M)과 사물인터넷 (Internet of Things, IoT) 등의 신규 서비스들이 창출되고 있다. 본 논문에서는 사용자들이 스마트폰이나 태블릿PC 등의 사용자 장비 (User Equipment, UE)를 이용하여 사물인터넷 디바이스 (IoT Device, IoTD)를 제어하는 환경에서, 스몰셀 기지국(Small-cell Access Point, SAP)을 도입하여 IoTD를 개인화하는 방법을 제안한다. 이를 위해, 먼저 UE, IoTD, 그리고 SAP 로 구성되는 시스템 아키텍처를 소개한다. 이후, IoTD의 프로파일 등록 절차와 댁내 외 UE의 IoTD를 제어 절차로 구성되는 IoTD 개인화 방법을 제안한다. 마지막으로 시뮬레이션을 통해 제안하는 방법의 시스템 성능을 분석하였고, 전형적인 방법보다 제안하는 방법이 패킷 지연시간, 패킷 손실률, 그리고 정규화된 수율 측면에서 성능이 향상됨을 알 수 있었다.

Keywords

References

  1. D. Giusto, A. Iera, G. Morabito, L. Atzori, The Internet of Things, Springer, 2010. http://link.springer.com/book/10.1007%2F978-1-4419-1674-7
  2. C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, "Context Aware Computing for The Internet of Things: A Survey," IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414-454, 2014. http://dx.doi.org/10.1109/SURV.2013.042313.00197
  3. J. Kim, J. Lee, J. Kim, J. Yun, "M2M Service Platforms: Survey, Issues, and Enabling Technologies," IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 61-76, 2014. http://dx.doi.org/10.1109/SURV.2013.100713.00203
  4. Cisco Visual Networking Index: Forecast and Methodology, 2015-2020, accessed 21 July 2016. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
  5. T. Kim, J. Park, H. Chong, K. Kim, B. Choi, "Performance analysis of IEEE 802.15.4 non-Beacon mode with the unslotted CSMA/CA," IEEE Commun. Lett., vol. 12, no. 4, pp. 238-240, 2008. http://dx.doi.org/10.1109/LCOMM.2008.071870
  6. G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE Trans. Select. Areas Commun., vol. 18, No. 3, pp. 535-547, 2000. http://dx.doi.org/10.1109/49.840210
  7. IEEE 802.15.4-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low Rate Wireless Personal Area Networks (LR-WPANs), June 2006. http://www.ieee802.org/15/pub/TG4.html
  8. Texas Instruments. CC2520: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. http://www.mouser.com/Texas-Instruments/?gclid=CjwKEAiA6YDBBRDwtpTQnYzx5lASJAC57ObMeE2cDbzfmmJ3tbF6CYevCB0b0iBpUOQMi-4ZoeRlzhoCIGrw_wcB
  9. Z. Li and M. Wilson, "User Plane and Control Plane Separation Framework for Home Base Stations," Fujitsu Sc.Technol. J, vol. 46, no. 1, pp. 79-86, 2010. http://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol46-1/paper26.pdf