DOI QR코드

DOI QR Code

Molecular Docking Studies of Wolbachia Endosymbiont of Brugia Malayi's Carbonic Anhydrase Using Coumarin-chromene Derivatives Towards Designing Anti-filarial Agents

  • Malathy, P. (CAS in Crystallography and Biophysics, University of Madras) ;
  • Jagadeesan, G. (Department of Physics, Presidency College) ;
  • Gunasekaran, K. (CAS in Crystallography and Biophysics, University of Madras) ;
  • Aravindhan, S. (Department of Physics, Presidency College)
  • Received : 2016.11.08
  • Accepted : 2016.12.25
  • Published : 2016.12.31

Abstract

Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Hence the enzyme carbonic anhydrase from wolbachia endosymbiont of Brugia malayi (wBm) which is responsible for the reversible interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa) is chosen as the drug target for filariasis. This enzyme is thought to play critical functions in bacteria by involving in various steps of their life cycle which are important for survival, The 3D structure of wBm carbonic anhydrase is predicted by selecting a suitable template using the similarity search tool, BLAST. The BLAST results shows a hexapeptide transferase family protein from Anaplasma phagocytophilum (PDB ID: 3IXC) having 77% similarity and 54% identity with wBm carbonic anhydrase. Hence the above enzyme is chosen as the template and the 3D structure of carbonic anhydrase is predicted by the tool Modeller9v7. Since the three dimensional structure of carbonic anhydrase from wolbachia endosymbiont of Brugia malayi has not yet solved, attempts were made to predict this protein. The predicted structure is validated and also molecular docking studies are carried out with the suitable inhibitors that have been solved experimentally.

Keywords

References

  1. World Health Organization. 2010.
  2. K. M. Pfarr and A. Hoerauf, "A niche for Wolbachia", Trends Parasitol., Vol. 23, pp. 5-7, 2007. https://doi.org/10.1016/j.pt.2006.11.002
  3. M. Palayam, K. Lakshminarayanan, M. Radhakrishnan, and G. Krishnaswamy, "Preliminary analysis to target pyruvate phosphate dikinase from wolbachia endosymbiont of Brugia malayi for designing antifilarial agents", Interdiscip. Sci., Vol. 4, pp. 74-82, 2012. https://doi.org/10.1007/s12539-011-0109-2
  4. K. S. Smith and J. G. Ferry, "Prokaryotic carbonic anhydrases", FEMS Microbiol. Rev., Vol. 24, pp. 335-366, 2000. https://doi.org/10.1111/j.1574-6976.2000.tb00546.x
  5. T. M. Iverson, B. E. Alber, C. Kisker, J. G. Ferry, and D. C. Rees, "A Closer Look at the Active Site of ${\gamma}$-Class Carbonic Anhydrases: High-Resolution Crystallographic Studies of the Carbonic Anhydrase from Methanosarcina thermophila", Biochemistry-US, Vol. 39, pp. 9222-9231, 2000. https://doi.org/10.1021/bi000204s
  6. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D. G. Bioinformatics, 23, 2947-2945, 2007. https://doi.org/10.1093/bioinformatics/btm404
  7. A. Sali and T. Blundell, "Comparative protein modelling by satisfaction of spatial restraints", J. Mol. Biol., Vol. 234, pp. 779-815, 1993. https://doi.org/10.1006/jmbi.1993.1626
  8. R. A. Laskowski, D. W. Macarthur, D. S. Moss, and J. M Thornton, "PROCHECK: a program to check the stereochemical quality of protein structures", J. Appl. Crystallogr., Vol. 26, pp. 283-291, 1993 https://doi.org/10.1107/S0021889892009944
  9. L. Holm and J. Park, "DaliLite workbench for protein structure comparison", Bioinformatics, Vol. 16, pp. 566-567, 2000. https://doi.org/10.1093/bioinformatics/16.6.566
  10. A. T. R. Laurie and R. M. Jackson, "Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites", Bioinformatics, Vol. 21, pp. 1908-1916, 2005. https://doi.org/10.1093/bioinformatics/bti315
  11. T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, and J. L. Banks, "Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening", J. Med. Chem., Vol. 47, pp. 1750-1759, 2004. https://doi.org/10.1021/jm030644s
  12. J. Ganapathy, K. Damodharan, B. Manickam, A. Sanmargam, and G. Krishnasamy, "1'-Methyl-4'-phenyl-dispiro-[chromane-3,3'-pyrrolidine-2',3''-indoline]-2,2''-dione", Acta Crystallographica Section E: Structure Reports Online, Vol. E68, pp. o915, 2012.
  13. G. Jagadeesan, S. Jayashree, D. Kannan, M. Bakthadoss, and S. Aravindhan, "14-Methoxy-4,6-dimethyl- 9-phenyl-8,12-dioxa-4,6-diazatetracyclo[$8.8.0.0^{2,7}.0^{13,18}$] octa-deca-2(7),13,15,17-tetraene-3,5,11-trione", Acta Crystallographica Section E: Structure Reports Online, Vol. E69, pp. o1199-o1200, 2013.
  14. G. Jagadeesan, D. Kannan, M. Bakthadoss, and S. Aravindhan, "14-Ethoxy-4,6,9-trimethyl-8,12-dioxa-4,6-diazatetracyclo[$8.8.0.0^{2,7}.0^{13,18}$]octadeca-2(7),13,15, 17-tetraene-3,5,11-trione", Acta Crystallographica Section E: Structure Reports Online, Vol. E69, pp. o272, 2013.
  15. G. Jagadeesan, D. Kannan, M. Bakthadoss, and S. Aravindhan, "14-Ethoxy-4,6-dimethyl-9-phenyl-8,12-dioxa-4,6-diazatetracyclo[$8.8.0.0^{2,7}.0^{13,18}$]octadeca-2(7),13,15,17-tetraene-3,5,11-trione" Acta Crystallographica Section E: Structure Reports Online, Vol. E69, pp. o80, 2013.
  16. G. Jagadeesan, D. Kannan, M. Bakthadoss, and S. Aravindhan, "Crystal and Molecular Structure of 12-(2-Methoxyphenyl)-9-[(4-methylbenzene)sulfonyl]-22-oxo-13,21-dioxa-9-azapentacyclo [$12.8.0.0^{2,11}.0^{3,8}.0^{15,20}$] docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carbonitrile", J. Chosun Natural Sci., Vol. 7, pp. 149-158, 2014. https://doi.org/10.13160/ricns.2014.7.3.149
  17. K. Gugan, G. Jagadeesan, D. Kannan, and S. Aravindhan, "Crystal and molecular structure of methyl-12-(3-bromophenyl)-9-[(4-methylbenzene)sulfonyl]-22-oxo-13,21-dioxa-9-azapentacyclo[$12.8.0.0^{2,11}.0^{3,8}.0^{15,20}$] docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carboxylate", J. Chosun Natural Sci., Vol. 7, pp. 92-102, 2014. https://doi.org/10.13160/ricns.2014.7.2.92
  18. J. R. Casley-Smith, "Changes in the microcirculation at the superficial and deeper levels in lymphoedema: the effects and results of massage, compression, exercise and benzopyrones on these levels during treatment", Clin. Hemorheol. Micro., Vol. 23, pp. 335-343, 2000.