DOI QR코드

DOI QR Code

Docking Study of Cysteinyl Leukotriene 1 Receptor: Therapeutic Target for Allergy

  • Babu, Sathya (Department of Bioinformatics, School of Bioengineering, SRM University)
  • Received : 2016.10.17
  • Accepted : 2016.12.25
  • Published : 2016.12.31

Abstract

Cysteinyl leukotrienes are inflammatory mediators having important role in pathophysiological conditions such as asthma and allergic rhinitis. CysLT1 receptor mediates most of the disease regulatory actions of the CysLTs and it is been implicated in a number of inflammatory conditions including gastrointestinal and cardiovascular diseases. Hence in the present study, molecular docking of CysLT1 was performed with its potent and orally efficacious antagonist CP-199330 and CP-199331. The aim of this study was to compare the interaction of CP-199330 and CP-199331 with known drugs such as Zafirlukast, Pranlukast and Montelukast which had already showed clinical efficacy in the treatment of asthma. The residues such as TYR83, GLN274, LYS311 and SER313 were found to interact with both the antagonist and the known drugs. Also, we noticed the docking scores and interaction of the antagonists were comparable with the known drugs. Hence these antagonists could serve as better drugs for the treatment of allergy.

Keywords

References

  1. A. J. Theron, H. C. Steel, G. R. Tintinger, C. M. Gravett, R. Anderson, and C. Feldman, "Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function", J. Immunol. Res., 2014.
  2. Y. Kanaoka and J. A. Boyce, "Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses", J. Immunol, Vol. 173, pp.1503-1510, 2004. https://doi.org/10.4049/jimmunol.173.3.1503
  3. M. Back, "Functional characteristics of cysteinylleukotriene receptor subtypes", Life Sci., Vol. 71, pp. 611-622, 2002. https://doi.org/10.1016/S0024-3205(02)01733-2
  4. C. Parravicini, G. Ranghino, M. P. Abbracchio, and P. Fantucci, "GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors", BMC Bioinformatics, Vol. 9, pp. 263, 2008. https://doi.org/10.1186/1471-2105-9-263
  5. A. Maekawaa, B. Balestrieria, K. F. Austena, and Y. Kanaokaa, "GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4", P. Natl. Acad. Sci. U.S.A., Vol. 106, pp. 11685-11690, 2009. https://doi.org/10.1073/pnas.0905364106
  6. X. Dong, Y. Zhao, X. Huang, K. Lin, J. Chen, E. Wei, T. Liu, and Y. Hu, "Structure-based drug design using GPCR homology modeling: Toward the discovery of novel selective CysLT2 antagonists", Eur. J. Med. Chem., Vol. 62, pp. 754-763, 2013. https://doi.org/10.1016/j.ejmech.2013.01.041
  7. Y. Ogawa and J. Calhoun, "The role of leukotrienes in airway inflammation", J. Allergy Clin. Immun., Vol. 118, pp. 789-798, 2006. https://doi.org/10.1016/j.jaci.2006.08.009
  8. C. Corrigan, K. Mallett, S. Ying, D. Roberts, A. Parikh, G. Scadding, and T. Lee, "Expression of the cysteinyl leukotriene receptors cysLT1 and cysLT2 in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis", J. Allergy Clin. Immun., Vol. 115, pp. 316-322, 2005. https://doi.org/10.1016/j.jaci.2004.10.051
  9. G. Woszczek, R. Pawliczak, H. Y. Qi, S. Nagineni, S. Alsaaty, C. Logun, and J. H. Shelhamer, "Functional characterization of human cysteinyl leukotriene 1 receptor gene structure", J. Immunol., Vol. 175, pp. 5152-5159, 2005. https://doi.org/10.4049/jimmunol.175.8.5152
  10. Y. Hui and C. D. Funk, "Cysteinyl leukotriene receptor", Biochem. Pharmacol., Vol. 64, pp. 1549-1557, 2002. https://doi.org/10.1016/S0006-2952(02)01357-6
  11. P. Montuschi, A. Sala, S.-E. Dahlen, and G. Folco, "Pharmacological modulation of leukotriene pathway in allergic airway disease", Drug Discov. Today, Vol. 12, pp. 404-412, 2007. https://doi.org/10.1016/j.drudis.2007.03.004
  12. H. M. Sarau, R. S. Ames, J. Chambers, C. Ellis, N. Elshourbagy, J. J. Foley, D. B. Schmidt, R. M. Muccitelli, O. Jenkins, P. R. Murdock, N. C. Herrity, W. Halsey, G. Sathe, A. I. Muir, P. Nuthulaganti, G. M. Dytko, P. T. Buckley, S. Wilson, D. J. Bergsma, and D. W.P. Hay, "Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor", Mol. Pharmacol., Vol. 56, pp. 657-663, 1999. https://doi.org/10.1124/mol.56.3.657
  13. V. Capra, "Molecular and functional aspects of human cysteinyl leukotriene receptors", Pharmacol. Res., Vol. 50, pp. 1-11, 2004. https://doi.org/10.1016/j.phrs.2003.12.012
  14. R. J. Chanbers, A. Marfat, G.W. Antognoli, J. B. Cheng, D. B. Damon, A. V. Kuperman, T. C. Liston, C. Mebus, J. S. Pillar, J. T. Shirley, and J. W. Watson, "Discovery of CP-199,330 and CP-199,331: Two potent and orally efficacious cysteinyl $LT_1$ receptor antagonist devoid of liver toxicity", Bioorg. Med. Chem. Lett., Vol.9, pp. 2773-2778, 1999. https://doi.org/10.1016/S0960-894X(99)00461-8
  15. B. Sathya and M. Thirumurthy, "Homology modeling of cysteinyl leukotriene1 receptor", J. Chosun Natural Sci. Vol. 8, pp. 13-18, 2015. https://doi.org/10.13160/ricns.2015.8.1.13
  16. SYBYL Software, 2006, Tripos Associates Inc, St. Louis, USA.
  17. A. N. Jain, "Scoring functions for protein-ligand docking", Curr. Protein Pept. Sc., Vol. 7, pp. 407-420, 2006. https://doi.org/10.2174/138920306778559395
  18. A. N. Jain, "Scoring non-covalent protein-ligand interactions: a continuous differentiable function tuned to compute binding", J. Comput. Aid. Mol. Des., Vol. 10, pp. 427-440, 1996. https://doi.org/10.1007/BF00124474