DOI QR코드

DOI QR Code

Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation

다공성 단열재를 포함한 열방어구조의 열 특성 분석

  • Hwang, Kyungmin (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Yongha (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Jungjin (Korea Aerospace Research Institute) ;
  • Park, Jungsun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 황경민 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 김용하 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 이정진 (한국항공우주연구원) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2016.09.30
  • Accepted : 2016.10.28
  • Published : 2016.12.31

Abstract

In a number of industries, porous insulations have been frequently used, reducing thermal insulation space through excellent performance of the thermal insulation's characteristics. This paper suggests an effective thermal conductivity prediction model. Firstly, we perform a literature review of traditional effective thermal conductivity prediction models and compare each model with experimental heat transfer results. Furthermore, this research defines the effectiveness of thermal conductivity prediction models using experimental heat transfer results and the Zehner-Schlunder model. The newly defined effective thermal conductivity prediction model has been verified to better predict performance than other models. Finally, this research performs a transient heat transfer analysis of a thermal protection system with a porous insulation in a high speed vehicle using the finite element method and confirms the validity of the effective thermal conductivity prediction model.

본 논문에서는 다공성 단열재의 정확도가 높은 유효 열전도율 예측 모델을 새롭게 제안하고, 기존 예측 모델 및 시험 결과와 비교 검증하였다. 이를 위해 기존 유효 예측 모델들을 다공성 단열재의 고체 부피율에 따른 열전도율 시험 결과 값과 비교하였다. 그리고 고체의 부피율에 따른 유효 열전도율 시험결과와 비교하여 가장 높은 정확도를 가진 Zehner-Schlunder 모델 및 시험 결과 데이터를 기반으로 고체-유체의 부피율과 열전도율 비로 구성된 다항식을 추가하여, 새로운 유효 열전도율 예측 모델을 정의하였다. 예측 모델을 시험 결과와 비교하여 검증하였다. 또한 예측 모델을 적용하여 열방어구조의 과도 열전달 해석을 수행하였으며, 열전달 시험 결과와의 비교를 통해 유효 열전도율 예측 모델의 유효성을 확인하였다.

Keywords

References

  1. J. S. So, G. S. Do, Y. J. Jang, S. H. Song, J. S. Han and H. J. Moon, "A study on nozzle structure analysis about thermal stress effect associated with nozzle thickness in rocket," Journal of Aerospace System Engineering, vol. 2, no. 2, pp. 28-34, 2008.
  2. S. S. Park, Y. G. Moon and J. S. Kawk, "Numerical analysis and 2-D experiment of heat transfer coefficient on the pintle of a controllable thruster," Journal of Aerospace System Engineering, vol. 6, no. 4, pp. 24-28, 2012.
  3. C. L. Christopher, "High Speed Flight Vehicle Structures: An Overview," Journal of Aircraft, Vol. 41, No. 5, pp. 978-985, 2004. https://doi.org/10.2514/1.3880
  4. E. A. Thornton, Thermal Structures for Aerospace Applications, AIAA Educational Series.
  5. M. Castellino, M. Rovere, Shahzad and M. I. Tagliaferro, "Conductivity in carbon nanotube polymer composites," Thermochimica Acta, Vol. 635, pp. 8-16.
  6. C. Zhang, Y. Du, Y. Liu and B. Sundman, "Thermal conductivity of Al-Cu-Mg-Si alloys : Experimental measurement and CALPHAD modeling," Thermochimica Acta Journal, Vol. 87, pp. 237-242.
  7. M. Kandula, "On the effective conductivity of porous packed beds with uniform spherical particles," Journal of Porous Media, Vol. 14, pp. 919-926, 2011. https://doi.org/10.1615/JPorMedia.v14.i10.70
  8. C. T. Hsu, P. Cheng and K. W. Wong, "Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media," International Journal of Heat and Mass Transfer, Vol. 37, pp. 2751-2759.
  9. C. P. Wong and R. S. Bollampally, "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging," Journal of Applied. Polymer Science, Vol. 74, pp. 3396-3403, 1999. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
  10. S. Kanuparthi, G. Subbarayan, T. Siegmund, B. Sammakia, "An efficient network model for determining the effective thermal conductivity of particulate thermal interface materials," IEEE Transactions on Components and Packing Technologies, Vol. 31, No. 3, pp. 611-621.
  11. W. Woodside, J. H. Messmer, "Thermal conductivity of porous media I. Unconsolidated sand," Journal of Applied Physics, Vol. 12, No. 9, pp. 1688-1699, 1961.
  12. N. R. Draper and H. Smith, Applied Regression Analysis, 3rd Edition, John Wiley.