DOI QR코드

DOI QR Code

Fibroblast Growth Factor Receptor 3 (FGFR3) Signaling in Achondroplasia

  • Park, Sung Won (Department of Pediatrics, Cheil General Hospital & Women's Health Care Center, Dankook University College of Medicine)
  • Received : 2016.12.13
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

Achondroplasia is autosomal dominant genetic disease and fibroblast growth factor receptor 3 (FGFR3) is currently known to be the only gene that causes achondroplasia. Gain-of function mutation in fibroblast-growth-factor-receptor 3 (FGFR3) causes the disease and C-type natriuretic peptide (CNP) antagonizes FGFR3 downstream signaling by inhibiting the pathway of mitogen-activated protein kinase (MAPK). As FGFR3-related skeletal dysplasias are caused by growth attenuation of the cartilage, chondrocytes appear to be unique in their response to FGFR3 activation. However, the full spectrum of molecular events by which FGFR3 mediates its signaling is just beginning to emerge. This article summaries the mechanisms of FGFR3 function in skeletal dysplasias, the extraordinary cellular manifestations of FGFR3 signaling in chondrocytes, and finally, the progress toward therapy for ACH.

Keywords

References

  1. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994;371:252-4. https://doi.org/10.1038/371252a0
  2. Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994;78:335-42. https://doi.org/10.1016/0092-8674(94)90302-6
  3. Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet 2007;370:162-72. https://doi.org/10.1016/S0140-6736(07)61090-3
  4. Avivi A, Zimmer Y, Yayon A, Yarden Y, Givol D. Flg-2, a new member of the family of fibroblast growth factor receptors. Oncogene 1991;6:1089-92.
  5. Peters K OD, Werner S, Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 1993;155:423-30. https://doi.org/10.1006/dbio.1993.1040
  6. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996;84:911-21. https://doi.org/10.1016/S0092-8674(00)81069-7
  7. Colvin JS, Bohne, BA, Harding GW, McEwen DG, Ornitz D M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996;12:390-7. https://doi.org/10.1038/ng0496-390
  8. Krejci P, Bryja V, Pachernik J, Hampl A, Pogue R, Mekikian P, et al. FGF2 inhibits proliferation and alters the cartilage-like phenotype of RCS cells. Exp Cell Res 2004;297:152-64. https://doi.org/10.1016/j.yexcr.2004.03.011
  9. Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, et al. Interaction of fibroblast growth factor and Cnatriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci 2005;118:5089-100. https://doi.org/10.1242/jcs.02618
  10. Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, de Crombrugghe B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev 2004;18:290-305. https://doi.org/10.1101/gad.1179104
  11. Ibrahimi OA, Yeh BK, Eliseenkova AV, Zhang F, Olsen SK, Igarashi M, et al. Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Mol Cell Biol 2005;25:671-84. https://doi.org/10.1128/MCB.25.2.671-684.2005
  12. Webster MK, Donghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by the transmembranedomainpointmutation found inachondroplasia. EMBO J 1996;15:520-7.
  13. d'Avis PY RS, Meyer AN, Bardwell WM, Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I. Cell Growth Differ 1998;9:71-8.
  14. Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growthfactor receptor 3 bymutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996; 13:233-7. https://doi.org/10.1038/ng0696-233
  15. Raffioni S, Zhu Y, Bradshaw RA, Thompson LM. Effect of transmembrane and kinase domainmutations on fibroblast growth factor receptor 3 chimera signaling in PC12 cells. Amodel for the control of receptor tyrosine kinase activation. J Biol Chem 1998;273:35250-9. https://doi.org/10.1074/jbc.273.52.35250
  16. Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S. Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 2005;120:223-35. https://doi.org/10.1016/j.cell.2004.11.051
  17. Lievens PM, Liboi E. The thanatophoric dysplasia type IImutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. J Biol Chem 2003;278:17344-9. https://doi.org/10.1074/jbc.M212710200
  18. Krejci P, Salazar L, Goodridge HS, Kashiwada TA, Schibler MJ, Jelinkova P, et al. STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes. J Cell Sci 2008a;121:272-81. https://doi.org/10.1242/jcs.017160
  19. Chen L AR, Yang X, Monsonego EO, Li C, Hauschka PV, Yayon A, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999;104:1517-25. https://doi.org/10.1172/JCI6690
  20. Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone 2004;34:26-36. https://doi.org/10.1016/j.bone.2003.09.002
  21. Li C, Chen L, Iwata T, KitagawaM, Fu XY, Deng CX. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism inmice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 1999;8:35-44. https://doi.org/10.1093/hmg/8.1.35
  22. Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365) $\rightarrow$ Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001;10:457-65. https://doi.org/10.1093/hmg/10.5.457
  23. de Frutos CA, Manzanares M, Flores JM, Huertas H, Martinez-Frias ML, Nieto MA. Snail1 is a transcriptional effector of FGFR3 signaling during chondrogenesis and achondroplasias. Dev Cell 2007;13:872-83. https://doi.org/10.1016/j.devcel.2007.09.016
  24. Tsuji T, Kunieda T. A loss-of-functionmutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem 2005;280:14288-92. https://doi.org/10.1074/jbc.C500024200
  25. Krejci P, Prochazkova J, Bryja V, Jelinkova P, Pejchalova K, Kozubik A, et al. Fibroblast growth factor inhibits interferon gamma-STAT1 and interleukin 6-STAT3 signaling in chondrocytes. Cell Signal 2009;21:151-60. https://doi.org/10.1016/j.cellsig.2008.10.006
  26. Dagoneau N, Scheffer D, Huber C, Al-Gazali LI, Di Rocco M, Godard A, et al. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet 2004;74:298-305. https://doi.org/10.1086/381715
  27. Aviezer D, Golembo M, Yayon A. Fibroblast growth factor receptor-3 as a therapeutic target for achondroplasia-genetic short limbed dwarfism. Curr Drug Targets 2003;4:353-65. https://doi.org/10.2174/1389450033490993
  28. Davidoff AM, Nathwani A, Spurbeck WW, Ng CY, Zhou J, Vanin EF. rAAVmediated long-term liver-generated expression of an angiogenesis inhibitor can restrict renal tumor growth in mice. Cancer Res 2002;62:3077-83.
  29. Laederich MB, Degnin C, Lunstrum GP, Holden P, Horton WA. Fibroblast growth factor receptor 3 (FGFR3) is a strong heat shock protein 90 (Hsp90) client: Implications for therapeutic manipulation. J Biol Chem 2011;286:19597-604. https://doi.org/10.1074/jbc.M110.206151
  30. Mohammadi M, McMahon M, Sun L, Tang C, Hirth P, Yeh BK, et al. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 1997;276:955-60. https://doi.org/10.1126/science.276.5314.955
  31. Chen J, Lee B, Williams IR, Kutok JL, Mitsiades CS, Duclos N, et al. FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 2005;24:8259-67. https://doi.org/10.1038/sj.onc.1208989
  32. Scuto A, Krejci P, Popplewell L, Wu J, Wang Y, Kujawski M, et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 2011;25: 538-50. https://doi.org/10.1038/leu.2010.289
  33. Qing J, Du X, Chen Y, Chan P, Li H, Wu P, et al. Antibodybased targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest 2009;119:1216-29. https://doi.org/10.1172/JCI38017