DOI QR코드

DOI QR Code

무선 에너지 전송 센서망에서의 공평성을 고려한 라우팅, 스케줄링, 전력 제어

Joint Routing, Scheduling, and Power Control for Wireless Sensor Networks with RF Energy Transfer Considering Fairness

  • Moon, Seokjae (Yonsei University Department of Electrical & Electronic Engineering) ;
  • Roh, Hee-Tae (LSIS Company Ltd.) ;
  • Lee, Jang-Won (Yonsei University Department of Electrical & Electronic Engineering)
  • 투고 : 2015.09.01
  • 심사 : 2016.02.22
  • 발행 : 2016.02.29

초록

최근들어 무선 센서망에서 센서 노드에 대한 전력 공급을 위한 무선 에너지 전송(radio frequency energy transfer: RFET)에 대한 관심이 높아지고 있다. 기존의 센서망에서는 센서 노드들의 에너지 소비를 줄이는 것이 중요한 연구주제 중의 하나였지만 무선 에너지 전송 센서망에서는 센서 노드들이 계속해서 에너지를 공급받을 수 있기 때문에 에너지 소모를 줄이는 것이 상대적으로 그리 중요한 이슈는 아니다. 하지만 센서 노드들 사이에 가용 에너지양의 차가 발생하게 되기 때문에 무선 에너지 전송 센서망의 성능 향상을 위해서는 이와 같은 성질을 고려하여 프로토콜을 설계하는 것이 중요하게 된다. 이에 본 논문에서는 이를 고려하여 무선 에너지 전송 무선 센서망에서 라우팅, 스케줄링, 전력제어 기법을 'Max-min'과 'Max-min fairness' 두가지의 관점에서 제안을 한다. 또한 본 논문에서 제안한 기법들이 무선 에너지 전송 센서망의 성능을 크게 향상시킴을 보이며 이와 더불어 'Max-min'과 'Max-min fairness' 사이의 차이에 대해서도 논의를 한다.

Recently, radio frequency energy transfer (RFET) attracts more and more interests for powering sensor nodes in the wireless sensor network (WSN). In the conventional WSN, reducing energy consumption of sensor nodes is of primary importance. On the contrary, in the WSN with RFET, reducing energy consumption is not an important issue. However, in the WSN with RFET, the energy harvesting rate of each sensor node depends on its location, which causes the unbalanced available energy among sensor nodes. Hence, to improve the performance of the WSN with RFET, it is important to develop network protocols considering this property. In this paper, we study this issue with jointly considering routing, scheduling, and power control in the WSN with RFET. In addition, we study this issue with considering two different objectives: 'Max-min' with which we tries to maximize the performance of a sensor node having the minimum performance and 'Max-min fairness' with which we tries to achieve max-min fairness among sensor nodes. We show that our solutions can improve network performance significantly and we also discuss the differences between 'Max-min' and 'Max-min fairness'.

키워드

참고문헌

  1. H.-T. Roh and J.-W. Lee, "Cross-Layer optimization for wireless sensor networks with RF energy transfer," ICTC, Oct. 2014
  2. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," Comput. Netw., vol. 38, no. 4, pp. 393-422, 2002. https://doi.org/10.1016/S1389-1286(01)00302-4
  3. J.-H. Son, S.-G. Shon, and H.-J. Byun, "Bio-Inspired energy efficient node scheduling algorithm in wireless sensor networks," J. KICS, vol. 38, no. 6, pp. 528-534, 2013.
  4. Y.-B. Cho, S.-H. Woo, and S.-H. Lee, "IDE-LEACH protocol for trust and Eenergy efficient operation of WSN environment," J. KICS, vol. 38, no. 10, pp. 801-807, 2013.
  5. A. A. Aziz, D. Tribudi, L. Ginting, P. A. rosyady, D. Setiawan, and K. W. Choi, "RF energy transfer testbed based on off-the-shelf components for IoT application," J. KICS, vol. 40, no. 10, pp. 1912-1921, 2015. https://doi.org/10.7840/kics.2015.40.10.1912
  6. W. K. G. Seah, Z. A. Eu, and H.-P. Tan, "Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP) - survey and challenges," in Wireless VITAE, pp. 1-5, Aalborg, May 2009.
  7. B. Kim, S. Park, and D. Hong, "Transmission capacity of wireless energy harvesting ad hoc networks," in Proc. KICS Fall Conf., pp. 256-257, Seoul, Korea, Nov. 2011.
  8. X. Lu, P. Wang, D. Niyato, D. Kim, and Z. Han, "Wireless networks with RF energy harvesting: a contemporary survey," in IEEE Commun. Surveys & Tuts., vol. 17, no. 2, pp. 757-789, 2015.
  9. M. K. Watfa, H. AlHassanieh, and S. Selman, "Multi-hop wireless energy transfer in WSNs," IEEE Commun. Lett., vol. 15, no. 12, pp. 1275-1277, Dec. 2011. https://doi.org/10.1109/LCOMM.2011.092911.100129
  10. P. Nintanavongsa, M. Y. Naderi, and K. R. Chowdhury, "Medium access control protocol design for sensors powered by wireless energy transfer," in IEEE INFOCOM, Apr. 2013.
  11. J. Kim and J.-W. Lee, "Energy adaptive MAC protocol for wireless sensor networks with RF energy transfer," in ICUFN, Jun. 2011.
  12. J. Kim and J.-W. Lee, "Performance analysis of the energy adaptive MAC protocol for wireless sensor networks with RF energy transfer," in ICTC, Sept. 2011.
  13. C. Fujii and W. K. G. Seah, "Multi-tier probabilistic polling in wireless sensor networks powered by energy harvesting," in ISSNIP, Dec. 2011.
  14. J. P. Olds and W. K. G. Seah, "Design of an active radio frequency powered multi-hop wireless sensor network," in IEEE ICIEA, Jul. 2012.
  15. R. Doost, K. R. Chowdhury, and M. D. Felice, "Routing and link layer protocol design for sensor networks with wireless energy transfer," in IEEE GLOBECOM, Dec. 2010.
  16. Y. Wu and W. Liu, "Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks," in IET Wireless Sensor Syst., vol. 3, no. 2, pp. 112-118, Jun. 2013.
  17. R. Srikant, The Mathematics of Internet Congestion Control, Birkhauser, 2003.
  18. J. Mo and J. Walrand, "Fair end-to-end window-based congestion control," IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556-567, Oct. 2000. https://doi.org/10.1109/90.879343
  19. S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ. Press, 2004.
  20. A. Drud, CONOPT solver manual, ARKI Consulting and Development, Bagsvaerd, Denmark, 1996.
  21. Powercast Corporation, TX91501 User's manual & P2110's datasheet, Retrieved Nov. 2015, from http://www.powercastco.com/resources.
  22. B. Tong, Z. Li, G. Wang, and W. Zhang, "How wireless power charging technology affects sensor network deployment and routing," in Proc. IEEE ICDCS, pp. 438-447, Jun. 2010.
  23. R. Jain, D. Chiu, and W. Hawe, "A quantitative measure of fairness and discrimination for resource allocation in shared computer systems," Tech. Rep., Sept. 1984.