DOI QR코드

DOI QR Code

Enhanced Resistance to Sulfur Dioxide Gas in Transgenic Petunia by Stacking both SOD2 and NDPK2 Genes

SOD2와 NDPK2 유전자 집적에 의한 페튜니아의 아황산가스 저항성 증진

  • Lee, Su Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cheon, Kyeong-Seong (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, So Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, O Hyeon (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Hye Jin (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Won Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yoo, Bong Sik (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2015.05.18
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

The aim of this study was to develop a transgenic petunia with enhanced resistance to sulfur dioxide ($SO_2$) gas by stacking two genes, SOD2 and NDPK2, which are both known to confer resistance to abiotic stresses. The first-generation hybrids ($TF_1$) were obtained through reciprocal crosses between an SOD2-transgenic line SOD2-2-1-1-35($T_4$)[S($T_4$)] and an NDPK2-transgenic line NDPK2-7-1($T_2$)[N7-1($T_2$)]. Approximately 32.1-73.0% of the first-generation hybrids ($TF_1$) carried both SOD2 and NDPK2 genes. These hybrids showed 2.6 and 5.1 times less damage than hybrids carrying only SOD2 or NDPK2 genes, respectively, when they were treated with $SO_2$ gas at 30 ppm. This confirmed that the heterozygous hybrids were more resistant to $SO_2$ than the hybrids carrying either one of the resistance genes. Second-generation hybrids ($TF_2$) were obtained by selfing the $TF_1$ individuals. We confirmed the expression of the stacked genes in the $TF_2$ hybrids by phenotypic observation of their response to $SO_2$ gas at 30 ppm as well as using RT-qPCR and photosynthetic efficiency.

유전자 집적에 의해 아황산가스 저항성 증진 페튜니아를 개발하고자 비생물적스트레스 저항성 유전자로 널리 알려진 SOD2와 NDPK2유전자가 각각 도입된 SOD2 형질전환 계통 SOD2-2-1-1-35($T_4$)[S($T_4$)]와 NDPK2 형질전환 계통 NDPK2-7-1($T_2$)[N7-1($T_2$)]간 상호교잡을 실시하여 교잡 제1세대를 획득하였다. 교잡 제1세대 중 SOD2와 NDPK2유전자가 모두 집적된 개체 획득율은 32.1-73.0%이었고, SOD2와 NDPK2유전자가 모두 집적된 개체는 SOD2 또는 NDPK2유전자가 단독 도입된 개체에 비해 아황산가스 30ppm처리 피해율이 2.6-5.1배 낮아 아황산가스 저항성이 증진되었음을 확인하였다. 또한 아황산가스 저항성이 증진된 교잡 제1세대를 자가수분에 의해 세대진전 시켜 획득한 교잡 제2세대의 아황산가스 저항성 검정을 통하여 교잡 제1세대에서의 아황산가스 저항성이 후대에서도 안정적으로 발현함을 확인하였다. 또한, 광합성 효율 증진 조사를 통해 아황산가스 저항성이 증진된 SOD2와 NDPK2유전자 집적 후대가 아황산 가스에 대한 스트레스를 덜 받고 있음을 확인하였고, RT-qPCR분석을 통해 SOD2와 NDPK2유전자 집적 후대의 아황산가스 저항성 증진이 SOD2와 NDPK2 유전자 집적에 의한 효과임을 확인하였다.

Keywords

References

  1. Bjorkman O. and B. Demmig. 1987. Photon yield of $O_2$ evolution and chlorophyll fluorescence at 77K among vascular plants od diverse origins. Planta 170:489-504. https://doi.org/10.1007/BF00402983
  2. Chan Y.L., K.H. Lin, Sanjaya, L.J. Liao, W.H. Chen, and M.T. Chan. 2005. Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res. 14:279-288. https://doi.org/10.1007/s11248-005-0106-5
  3. Francois, I.E.J.A., W.F. Broekaert, and B.P.A. Cammue. 2002. Different approaches for multi-transgene-stacking in plants. Plant Sci. 163:281-295. https://doi.org/10.1016/S0168-9452(02)00130-9
  4. Gao X.H., Z.H. Ren, Y.X. Zhao, and H. Zhang. 2003. Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol. 133:1873-1881 https://doi.org/10.1104/pp.103.026062
  5. Halpin C. 2005 gene stacking in transgenic plants-the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 3:141-155. https://doi.org/10.1111/j.1467-7652.2004.00113.x
  6. Kalunke R.M., M. Janni, S. Bebedettelli, and R. D'Ovidio. 2013. Using biolistics and hybridization to combine multiple glycosidase inhibitor transgenes in wheat. Euphytica 194:443-457. https://doi.org/10.1007/s10681-013-0972-5
  7. Kim Y.H., S. Lim, S.H. Han, J.J. Lee, K.J. Nam, J.C. Jeong, H.S. Lee, and S.S. Kwak. 2015. Expression of both CuZnSOD and APX in chloroplasts enhances tolerance to sulfur dioxide in transgenic sweet potato plants. C. R. Biol. 338:307-313. https://doi.org/10.1016/j.crvi.2015.03.012
  8. Lee S.Y., B.H. Han, E.W. Noh, and S.S. Kwak. 2009a. Transferase of SOD2 or NDP kinase 2 genes into purebred lines of petunia. J. Plant Biotechnol. 36:144-148. https://doi.org/10.5010/JPB.2009.36.2.144
  9. Lee S.Y., J.L. Kim, and D.Y. Kim. 2011. Identification of enhanced resistance to abiotic stress induced by methyl viologen in progeny from a cross of transgenic lines of Petunia. Flower Res. J. 19:269-273.
  10. Lee S.Y., J. L. Lee, J.H. Kim, and K.J. Kim. 2015. Enhanced removal of exogenous formaldehyde gas by AtFALDH-transgenic Petunia. Hortic. Environ. Biotechnol. 56:247-254. https://doi.org/10.1007/s13580-015-0087-0
  11. Lee Y.R. S.Y. Choi, O.K. Kwon, and E.J. Huh. 2009b. Injury symptoms of orchids by sulfur dioxide gases in greenhouse. Flower Res. J. 17:214-241.
  12. Ministry of Agriculture, Food and Rural Affairs. 2014. 2013 Statistics of floriculture crops. p. 12-15.
  13. Nakamura M, M. Kuramata, I. Kasugai, M. Abe, and S. Youssefian. 2008. Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine(thiol) lyrase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity. Plant Cell Rep. 28:313-323.
  14. Nian H.J., D.J. Zhang, Z.D. Zeng, J.P. Yan, K.Z. Li, and L.M. Chen. 2014. Over-expression of heat shock factor gene (AtHsfA1d) from Arabidopsis thaliana confers formaldehyde tolerance in tobacco. Acta Physiol. Plant. 36:1455-1462. https://doi.org/10.1007/s11738-014-1523-y
  15. Su X.H., P. Zhou, R. Wang, Z.P. Luo, and Z.L. Xia. 2015. Overexpression of the maize psbA gene enhances sulfur dioxide tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult. 120:303-311 https://doi.org/10.1007/s11240-014-0607-0
  16. Tang L., S.Y. Kwon, D.J. Yun, S.S. Kwak, and H.S. Lee. 2004. Selection of transgenic potato plants expressing NDP Kinase 2 gene with enhanced tolerance to oxidative stress. Korean J. Plant Biotechnol. 31:191-195. https://doi.org/10.5010/JPB.2004.31.3.191
  17. Tseng M.J., C.W. Liu, and J.C. Yiu. 2008. Tolerance to sulfur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase gene of Escherichia coli. Sci. Hortic. 115:101-110. https://doi.org/10.1016/j.scienta.2007.08.008
  18. United States Department of Agriculture. 2011. Floriculture crops 2010 summary. p. 12-23.
  19. Zhao F.Y., S.L. Guo, H. Zhang, and Y.X. Zhao. 2006. Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci. 170:216-224. https://doi.org/10.1016/j.plantsci.2005.08.017