DOI QR코드

DOI QR Code

Analysis of Characteristics of Material-Centered Integrated Unit in Finland Elementary Science Textbook

핀란드 초등 과학 교과서의 소재중심 통합단원 분석

  • Received : 2015.12.03
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

The purpose of this study was to grasp the characteristics of composition regarding the material-centered integrated unit of environmental and natural studies, a science subject in Finland, to investigate a need for applying the material-centered integrated unit to the science curriculum of Korea. For the purpose, the study made an analysis on contents, inquiry activities, and visual materials (the most important in the elementary science curriculum and textbook composition), and it brought following results: First, as a result of analyzing the area of contents, the bicycle material-centered integrated unit comprised a large proportion of 44 pages (25.3%) of the whole 174 pages from the environmental and natural studies textbook for the third grade. The contents included such various concepts as traffic rules, safety, environmental protection and pollution, recycling and separate collection, tubes and triangular structures, wedges and screws, leverage, wheels, axles, gears, elasticity (spring), friction, and so on. Second, as a result of analyzing contents related to the thinking ability of inquiry activities, "expecting or confirming expectations" and "application" are included in every lesson, and one lesson is composed in such a way that students can study on bicycles as a practical material for their daily life and they can improve various thinking abilities. Third, as a result of analyzing the circumstances of inquiry activities, daily circumstances made up eight lessons (80.0%) and technical and social circumstances made up two lessons (20.0%) by focusing on bicycles, a material related to students' daily life. Fourth, as a result of analyzing visual materials, the percentage of pictures and photos was high at 53.4% and 45.2% respectively. As a result of analyzing the role of visual materials, the percentage of the illustrative role and explanatory-complementary role was high at 52.1% and 47.9% respectively. Lastly, as a result of analyzing from the epistemological view to interpret the relation between visual materials and students and the position of visual materials, the visual textbook materials were provided toward a way that students can decrease their feeling of epistemological separation in the three fields of ideational metafunction, interpersonal metafunction, and textual metafunction.

Keywords

References

  1. 권재술(1991). 학문 중심 과학 교육의 문제점과 생활 소재의 과학 교재화 방안. 한국과학교육학회지, 11(1), 117-126.
  2. 권치순, 조한수(2011). 한국과 핀란드 초등과학 교과서의 체제와 내용 비교 분석. 대한지구과학교육학회지, 4(2), 134-141.
  3. 김경희, 시기자, 김미영, 옥현진, 임해미, 김선희, 정송, 정지영, 박희재(2010). OECD 학업성취도 국제비교 연구(PISA 2009) 결과보고서. 서울: 한국교육과정평가원.
  4. 김수정, 한재영(2007). 고등학교 1학년 과학 교과서에 사용된 시각자료 분석. 과학교육논총, 20(1), 1-11.
  5. 김수진, 김미영, 박지현, 전경희, 김민정, 서지희(2014). 수학.과학 성취도 추이변화 국제비교 연구: TIMSS 2015 예비검사 시행 및 결과 분석. 서울: 한국교육과정평가원.
  6. 김용환, 신순선, 조규성(2008). 중학교 과학과 학습부진아 지도실태 및 개선방향에 대한 교사들의 인식. 과학교육논총, 33, 81-90.
  7. 김지은, 여상인(2014). 2007년 개정 초등 5, 6학년 과학 교과서 물질 영역에 제시된 탐구 활동 분석. 초등과학교육, 33(1), 21-29.
  8. 김형진, 신명경, 이규호, 권경필(2014). 초등 과학 교과서에 실린 시각 자료의 종류, 역할 그리고 사회-기호학적 특징 분석. 과학교육연구지, 38(3), 641-656.
  9. 방희건, 박재근(2012). 초등학교 과학 교과서 생명 영역에 제시된 시각 자료의 분석. 생물교육, 40(3), 279-289.
  10. 신명경, 이수정(2013). 과학탐구의 핸즈온 활동 내용, 사고 활동 내용, 논리적 구조 측면에서의 초등 과학 교과서 분석: 지구와 우주 영역의 사례. 교과교육학연구, 17(4), 1483-1499.
  11. 심규철, 김현섭, 박영철(2002). 제7차 교육과정 7학년 과학 교과 생명 영역의 탐구 분석. 한국과학교육학회지, 22(3), 550-559.
  12. 여상인, 박창식, 임희준(2007). 한국과 미국의 BSCS 초등 과학 교과서의 삽화 비교. 초등과학교육, 26(4), 459-467.
  13. 우종옥, 정철(1996). 과학 탐구의 3차원 평가틀에 의한 평가 목표 분류 및 진술. 한국과학교육학회지, 16(3), 270-277.
  14. 이기영(2009). 중학교 과학 교과서에 사용된 시각자료의 유형, 기능 및 구조 분석: 제7차 교육과정 지구과학 내용을 중심으로. 한국지구과학회지, 30(7), 897-908. https://doi.org/10.5467/JKESS.2009.30.7.897
  15. 이소영, 노석구(2014). 우리나라 2009 개정 초등 과학교육과정과 핀란드 초등 과학교육과정 비교분석. 초등과학교육, 33(3), 491-509.
  16. 이정아(2011). 2007개정 교육과정 초등 과학 교과서의 시각 이미지에 대한 언어학적 분석: 날씨의 변화와 단원을 중심으로. 초등과학교육, 30(4), 482-489.
  17. 이정아, 맹승호, 김찬종(2007). 초등 과학 교과서 시각 이미지의 사회-기호학적 분석: '날씨'와 '일기예보'를 중심으로. 한국지구과학회지, 28(3), 277-288. https://doi.org/10.5467/JKESS.2007.28.3.277
  18. 채희인, 노석구(2015). 핀란드의 핵심역량교육 연구 동향: 초등과학교육 중심의 분석. 교과교육학연구, 19(3), 645-667.
  19. 최병순, 권용주, 김익균, 양일호, 정용재, 정철, 차희영, 채동현(2011). 과학과 학습부진학생 지도 전략 및 방법 연구. 청주: 충청북도교육청.
  20. 최재중, 박재근(2010). 우리나라와 싱가포르 초등학교 과학교과서의 내용요소 및 탐구활동 비교 분석. 과학교육논총, 23(1), 115-126.
  21. 한재영(2006). 과학 교과서에 사용된 화살표의 의미. 초등과학교육, 25(3), 244-256.
  22. Dimopoulos, K., Koulaidis, V. & Sklaveniti, S. (2003). Towards an analysis of visual images in school science textbooks and press articles about science and technology. Research in Science Education, 33(2), 189-216. https://doi.org/10.1023/A:1025006310503
  23. Finnish National Board of Education. (2004). National core curriculum for basic education 2004. Helsinki: FNBE.
  24. Finnish National Board of Education. (2011). Amendments and additional to the national core curriculum for basic education. Helsinki: FNBE.
  25. Halliday, M. (1994). An introduction to functional grammar (2nd ed.). London: Edward Arnold.
  26. International Institute for Management Development (IMD). (2014a). IMD world competitiveness yearbook. Lausanne: IMD.
  27. International Institute for Management Development (IMD). (2014b). IMD world talent report. Lausanne: IMD.
  28. Jacobi, D. (1999). Le communication scientifique: Discours, figure, modeles. Grenoble: Presses Universitaires de Grenoble.
  29. Johanna, H., Martti, R., Jorma, R., Martti, S. & Erkki, A. (2004). Luonnonkirja 3. Helsinki: WSOY.
  30. Kress, G. & van Leewen, T. (2006). Reading images: The grammar of visual design (2nd ed.). New York: Routledge.
  31. Kress, G., Jewitt, C., Ogborn, J. & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. NY: Continuum.
  32. Lemke, J. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In Martin, J. R. & Veel, R. (Eds.), Reading science: Critical and functional perspectives on discourse of science (pp. 87-113). London: Routledge.
  33. Millar, R. (2010). Analysing practice science activities to assess and improve their effectiveness. Heslington: University of York.
  34. Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O'Sullivan, C. Y., Arora, A. & Erberber, E. (2005). TIMSS 2007 assessment frameworks. Chestnut Hill: IEA.
  35. National Assessment of Educational Progress (NAEP). (1986). The science objectives, 1985-86 assessment. Princeton, NJ: Educational Testing Serve.
  36. National Research Council (NRC). (2000). Inquiry and the national science education standards. Washington, D. C.: National Academy Press.
  37. Organization for Economic Cooperation and Development (OECD). (2013). PISA 2012 results: What students know and can do - student performance in mathematics, reading and science (vol. 1). OECD.
  38. Pozzer, L. L. & Roth, W. M. (2003). Toward a pedagogy of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40, 1089-1114. https://doi.org/10.1002/tea.10122
  39. Richard, G. (2015). Finland schools: Subjects scrapped and replaced with 'topics' as country reforms its education system. The Independent, Retrieved Mar 20, 2015, from http://www.independent.co.uk/news.
  40. World Economic Forum (WEF). (2014). The global competitiveness report 2014-2015. Geneva: WEF.